Skip to main content

Advertisement

Log in

Diversity and distribution within the sea spider genus Pallenopsis (Chelicerata: Pycnogonida) in the Western Antarctic as revealed by mitochondrial DNA

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Pycnogonids are marine arthropods with cosmopolitan and eurybathic distribution. Of the approximately 1300 pycnogonid species described worldwide, over 260 species occur in the Southern Ocean, and over half of those are endemic to the Antarctic. Morphological data suggest circumpolar distributions for multiple Antarctic species; however, recent molecular inquiries into the genetic structure of Antarctic benthic invertebrate populations have revealed varying patterns of genetic connectivity and, in many cases, radiation of morphologically cryptic species incompatible with the previously hypothesized genetic homogeneity for Southern Ocean invertebrates. To date, little is known about genetic connectivity within Antarctic Pallenopsis species populations, and Pallenopsis phylogeny remains poorly resolved. This study describes genetic structure of Pallenopsis populations of western Antarctic coastal regions, the Scotia Arc, Falkland Islands, and Chilean coast. We present the results of analyses derived from the mitochondrial COI gene that demonstrate patterns of connectivity for these populations. Examination of genetic characters has allowed for the identification of divergent mitochondrial lineages within Pallenopsis and will lead to a description of at least one new species. Future sampling and analyses from other areas of the Antarctic coastline will provide a broader context for the phylogeny of Pallenopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allcock AL, Barratt I, Eléaume M et al (2011) Cryptic speciation and the circumpolarity debate: a case study on endemic Southern Ocean octopuses using the COI barcode of life. Deep Sea Res II 58:242–249. doi:10.1016/j.dsr2.2010.05.016

    Article  Google Scholar 

  • Arabi J, Cruaud C, Couloux A, Hassanin A (2010) Studying sources of incongruence in arthropod molecular phylogenies: sea spiders (Pycnogonida) as a case study. CR Biol 333:438–453. doi:10.1016/j.crvi.2010.01.018

    Article  CAS  Google Scholar 

  • Arango CP, Wheeler WC (2007) Phylogeny of the sea spiders (Arthropoda, Pycnogonida) based on direct optimization of six loci and morphology. Cladistics 23:255–293. doi:10.1111/j.1096-0031.2007.00143.x

    Article  Google Scholar 

  • Arango CP, Soler-Membrives A, Miller KJ (2011) Genetic differentiation in the circum-Antarctic sea spider Nymphon australe (Pycnogonida: Nymphonidae). Deep Sea Res II 58:212–219. doi:10.1016/j.dsr2.2010.05.019

    Article  CAS  Google Scholar 

  • Arnaud F, Bamber RN (1987) The biology of Pycnogonida. Adv Mar Biol 24:1–96

    Article  Google Scholar 

  • Arntz WE, Brey T, Gallardo VA (1994) Antarctic zoobenthos. Oceanogr Mar Biol Annu Rev 32:241–304

    Google Scholar 

  • Arntz WE, Brey T, Gallardo VA (1997) Antarctic marine biodiversity: an overview. In: Battaglia B, Valencia J, Walton DWH (eds) Antarctic communities: species, structure and survival. Cambridge University Press, Cambridge, pp 3–14

    Google Scholar 

  • Baird HP, Miller KJ, Stark JS (2011) Evidence of hidden biodiversity, ongoing speciation and diverse patterns of genetic structure in giant Antarctic amphipods. Mol Ecol 20:3439–3454. doi:10.1111/j.1365-294X.2011.05173.x

    Article  PubMed  Google Scholar 

  • Barrett RDH, Hebert PDN (2005) Identifying spiders through DNA barcodes. Can J Zool 83:481–491. doi:10.1139/z05-024

    Article  CAS  Google Scholar 

  • Brey T, Dahm C, Gorny M et al (1996) Do Antarctic benthic invertebrates show an extended level of eurybathy? Antarct Sci 8:3–6

    Article  Google Scholar 

  • Child CA (1995) Nymphonidae, Colossendeidae, Rhynchothoracidae, Pycnogonidae, Endeididae, and Callipallenidae. American Geophysical Union, Washington

    Book  Google Scholar 

  • Clark PU, Dyke AS, Shakun JD et al (2009) The last glacial maximum. Science 325:710–714

    Article  CAS  PubMed  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660

    Article  CAS  PubMed  Google Scholar 

  • Convey P, Stevens MI, Hodgson DA et al (2009) Exploring biological constraints on the glacial history of Antarctica. Quatern Sci Rev 28:3035–3048. doi:10.1016/j.quascirev.2009.08.015

    Article  Google Scholar 

  • Dietz L, Krapp F, Hendrickx ME et al (2013) Evidence from morphological and genetic data confirms that Colossendeis tenera Hilton, 1943 (Arthropoda: Pycnogonida), does not belong to the Colossendeis megalonyx Hoek, 1881 complex. Org Divers Evol 13:151–162. doi:10.1007/s13127-012-0120-4

    Article  Google Scholar 

  • Dietz L, Pieper S, Seefeldt MA, Leese F (2015a) Morphological and genetic data clarify the taxonomic status of Colossendeis robusta and C. glacialis (Pycnogonida) and reveal overlooked diversity. Arthropod Syst Phylogeny 73:107–128

    Google Scholar 

  • Dietz L, Arango, CP, Domel JS, Halanych KM, Harder AM, Held C, Mahon AR, Mayer C, Melzer RR, Rouse GW, Weis A, Wilson NG, Leese F (2015b) Regional differentiation and extensive hybridization between mitochondrial clades of the Southern Ocean giant sea spider Colossendeis megalonyx. R Soc Open Sci 2: 140424. http://dx.doi.org/10.1098/rsos.140424

  • Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973. doi:10.1093/molbev/mss075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folmer O, Black M, Hoeh W et al (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3:294–299

    CAS  Google Scholar 

  • Fraser CI, Nikula R, Waters JM (2010) Oceanic rafting by a coastal community. Proc R Soc B Biol Sci 278:649–655. doi:10.1126/science.87.2250.119

    Article  Google Scholar 

  • Fu Y-X (1996) New statistical tests of neutrality for DNA samples from a population. Genetics 143:557–570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths HJ, Barnes DKA, Linse K (2009) Towards a generalized biogeography of the Southern Ocean benthos. J Biogeogr 36:162–177. doi:10.1111/j.1365-2699.2008.01979.x

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hart MW, Sunday J (2007) Things fall apart: biological species form unconnected parsimony networks. Biol Lett 3:509–512. doi:10.1098/rsbl.2007.0307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Havermans C, Nagy ZT, Sonet G et al (2011) DNA barcoding reveals new insights into the diversity of Antarctic species of Orchomene sensu lato (Crustacea: Amphipoda: Lysianassoidea). Deep Sea Res II 58:230–241. doi:10.1016/j.dsr2.2010.09.028

    Article  CAS  Google Scholar 

  • Held C (2003) Molecular evidence for cryptic speciation within the widespread Antarctic crustacean Ceratoserolis trilobitoides (Crustacea, Isopoda). In: Huiskies AHL, Giekes WWW, Rozema J et al (eds) Antarctic biology in a global context. Backhuys, Leiden, pp 135–139

    Google Scholar 

  • Held C, Wägele J-W (2005) Cryptic speciation in the giant Antarctic isopod Glyptonotus antarcticus (Isopoda: Valvifera: Chaetiliidae). Sci Mar 69:175–181

    Article  Google Scholar 

  • Hunter RL, Halanych KM (2010) Phylogeography of the Antarctic planktotrophic brittle star Ophionotus victoriae reveals genetic structure inconsistent with early life history. Mar Biol 157:1693–1704. doi:10.1007/s00227-010-1443-3

    Article  CAS  Google Scholar 

  • Krabbe K, Leese F, Mayer C et al (2010) Cryptic mitochondrial lineages in the widespread pycnogonid Colossendeis megalonyx Hoek, 1881 from Antarctic and Subantarctic waters. Polar Biol 33:281–292. doi:10.1007/s00300-009-0703-5

    Article  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452. doi:10.1093/bioinformatics/btp187

    Article  CAS  PubMed  Google Scholar 

  • Linse K, Cope T, Lörz A-N, Sands C (2007) Is the Scotia Sea a centre of Antarctic marine diversification? Some evidence of cryptic speciation in the circum-Antarctic bivalve Lissarca notorcadensis (Arcoidea: Philobryidae). Polar Biol 30:1059–1068. doi:10.1007/s00300-007-0265-3

    Article  Google Scholar 

  • Mahon AR, Arango CP, Halanych KM (2008) Genetic diversity of Nymphon (Arthropoda: Pycnogonida: Nymphonidae) along the Antarctic Peninsula with a focus on Nymphon australe Hodgson 1902. Mar Biol 155:315–323. doi:10.1007/s00227-008-1029-5

    Article  Google Scholar 

  • Milne I, Lindner D, Bayer M et al (2008) TOPALi v2: a rich graphical interface for evolutionary analyses of multiple alignments on HPC clusters and multi-core desktops. Bioinformatics 25:126–127. doi:10.1093/bioinformatics/btn575

    Article  PubMed  PubMed Central  Google Scholar 

  • Munilla T, Soler-Membrives A (2009) Check-list of the pycnogonids from Antarctic and sub-Antarctic waters: zoogeographic implications. Antarct Sci 21:99–111. doi:10.1017/S095410200800151X

    Article  Google Scholar 

  • Nielsen JF, Lavery S, Lörz A (2009) Synopsis of a new collection of sea spiders (Arthopoda: Pycnogonida) from the Ross Sea, Antarctica. Polar Biol 32:1147–1155

    Article  Google Scholar 

  • Poulin E, Féral JP (1996) Why are there so many species of brooding Antarctic echinoids? Zool Reihe 50:820–830

    Google Scholar 

  • Prendini L, Weygoldt P, Wheeler WC (2005) Systematics of the group of African whip spiders (Chelicerata: Amblypygi): evidence from behaviour, morphology and DNA. Org Divers Evol 5:203–236. doi:10.1016/j.ode.2004.12.004

    Article  Google Scholar 

  • Puillandre N, Lambert A, Brouillet S, Achaz G (2012) ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol Ecol 21:1864–1877. doi:10.1111/j.1365-294X.2011.05239.x

    Article  CAS  PubMed  Google Scholar 

  • Rambaut A, Suchard MA, Xie D, Drummond AJ (2014) Tracer v1.6, Available from http://beast.bio.ed.ac.uk/Tracer

  • Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19:2092–2100

    Article  CAS  PubMed  Google Scholar 

  • Raupach MJ, Wägele J-W (2006) Distinguishing cryptic species in Antarctic Asellota (Crustacea: Isopoda)—a preliminary study of mitochondrial DNA in Acanthaspidia drygalskii. Antarct Sci 18:191. doi:10.1017/S0954102006000228

    Article  Google Scholar 

  • Reid NM, Carstens BC (2012) Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed Yule-coalescent model. BMC Evol Biol 12:196. doi:10.1186/1471-2148-12-196

    Article  PubMed  PubMed Central  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P et al (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. doi:10.1093/sysbio/sys029

    Article  PubMed  PubMed Central  Google Scholar 

  • Scher HD, Martin EE (2006) Timing and climatic consequences of the opening of Drake Passage. Science 312:428–430. doi:10.1126/science.1120044

    Article  CAS  PubMed  Google Scholar 

  • Simonsen KL, Churchill GA, Aquadro CF (1995) Properties of statistical tests of neutrality for DNA polymorphism data. Genetics 141:413–429

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. doi:10.1093/bioinformatics/btu033/-/DC1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tajima F (1989) Statistical methods for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thatje S, Hillenbrand C-D, Larter R (2005) On the origin of Antarctic marine benthic community structure. Trends Ecol Evol 20:534–540. doi:10.1016/j.tree.2005.07.010

    Article  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thornhill DJ, Mahon AR, Norenburg JL, Halanych KM (2008) Open-ocean barriers to dispersal: a test case with the Antarctic Polar Front and the ribbon worm Parborlasia corrugatus (Nemertea: Lineidae). Mol Ecol 17:5104–5117. doi:10.1111/j.1365-294X.2008.03970.x

    Article  CAS  PubMed  Google Scholar 

  • Waters JM (2008) Driven by the West Wind Drift? A synthesis of southern temperate marine biogeography, with new directions for dispersalism. J Biogeogr 35:417–427. doi:10.1111/j.1365-2699.2007.01724.x

    Article  Google Scholar 

  • Weis A, Melzer RR (2012a) How did sea spiders recolonize the Chilean fjords after glaciation? DNA barcoding of Pycnogonida, with remarks on phylogeography of Achelia assimilis (Haswell, 1885). Syst Biodivers 10:361–374. doi:10.1080/14772000.2012.716462

    Article  Google Scholar 

  • Weis A, Melzer RR (2012b) Chilean and Subantarctic Pycnogonida collected by the “Huinay Fjordos” Expeditions 2005–2011. Zool Reihe 88:185–203. doi:10.1002/zoos.201200016

    Article  Google Scholar 

  • Weis A, Meyer R, Dietz L et al (2014) Pallenopsis patagonica (Hoek, 1881)—a species complex revealed by morphology and DNA barcoding, with description of a new species of Pallenopsis Wilson, 1881. Zool J Linn Soc 170:110–131. doi:10.1111/zoj.12097

    Article  Google Scholar 

  • Wilcox TP, Hugg L, Zeh JA, Zeh DW (1997) Mitochondrial DNA sequencing reveals extreme genetic differentiation in a cryptic species complex of neotropical pseudoscorpions. Mol Phylogenet Evol 7:208–216

    Article  CAS  PubMed  Google Scholar 

  • Wilson NG, Hunter RL, Lockhart SJ, Halanych KM (2007) Multiple lineages and absence of panmixia in the “circumpolar” crinoid Promachocrinus kerguelensis from the Atlantic sector of Antarctica. Mar Biol 152:895–904. doi:10.1007/s00227-007-0742-9

    Article  Google Scholar 

  • Zhang J, Kapli P, Pavlidis P, Stamatakis A (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29:2869–2876. doi:10.1093/bioinformatics/btt499/-/DC1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the staff and crew of the ASRV Laurence M. Gould and the RVIB Nathaniel B. Palmer and the Antarctic Support Company.  This work was supported by National Science Foundation Grants (ANT-1043745, PLR-1043670).  Additionally, this work represents contribution #136 to the AU Marine Biology Program and is contribution #44 to the AU Molette Lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew R. Mahon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harder, A.M., Halanych, K.M. & Mahon, A.R. Diversity and distribution within the sea spider genus Pallenopsis (Chelicerata: Pycnogonida) in the Western Antarctic as revealed by mitochondrial DNA. Polar Biol 39, 677–688 (2016). https://doi.org/10.1007/s00300-015-1823-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-015-1823-8

Keywords

Navigation