Skip to main content

Advertisement

Log in

Polar and Alpine Microbial Collection (PAMC): a culture collection dedicated to polar and alpine microorganisms

  • Short Note
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Microorganisms in polar areas may have important ecological roles in biogeochemical cycles and the food chain. They are adapted to polar environments by means of special physiological adaptation mechanisms that include cold-adapted enzymes and cryoprotectants such as exopolysaccharides. Culture collections for polar microorganisms can provide research resources for ecological and physiological studies. The Polar and Alpine Microbial Collection (PAMC) is a specialized culture collection for maintenance and distribution of polar and alpine microorganisms. A database system was developed to share important data fields with DarwinCore2 and Ocean Biogeographic Information System database schemas. Approximately 1,500 out of 5,500 strains maintained in PAMC have been identified and belonged primarily to the phyla Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. Many of the microbial strains can grow at low temperature and produce proteases, lipases, and/or exopolysaccharides. PAMC provides search tools based on keywords such as taxonomy, geographical origin, habitat, and physiological characteristics. Biological materials and information provided by PAMC will be important resources for ecological and physiological studies on polar and alpine microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Cho KH, Hong SG, Cho HH, Lee YK, Chun J, Lee HK (2008) Maribacter arcticus sp. nov., isolated from Arctic marine sediment. Int J Syst and Evol Microbiol 58:1300–1303

    Article  CAS  Google Scholar 

  • Gerday C, Aittaleb M, Bentahir M, Chessa J-P, Claverie P, Collins T, D’Amico S, Dumont J, Garsoux G, Georlette D, Hoyoux A, Lonhienne T, Meuwis M-A, Feller G (2000) Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol 18:103–107

    Article  PubMed  CAS  Google Scholar 

  • Hong SG, Lee YK, Yim JH, Chun J, Lee HK (2008) Sanguibacter antarcticus sp. nov., isolated from Antarctic sea sand. Int J Syst and Evol Microbiol 58:50–52

    Article  CAS  Google Scholar 

  • Jaspers E, Overmann J (2004) Ecological significance of microdiversity: identical 16S rRNA gene sequences can be found in bacteria with highly divergent genomes and ecophysiologies. Appl Environ Microbiol 70:4831–4839

    Article  PubMed  CAS  Google Scholar 

  • Kim SJ, Yim JH (2007) Cryoprotective properties of exopolysaccharide (P-21653) produced by the Antarctic bacterium, Pseudoalteromonas arctica KOPRI 21653. J Microbiol 45:510–514

    PubMed  CAS  Google Scholar 

  • Kim D, Park HJ, Lee YM, Hong SG, Lee HK, Yim JH (2010a) Screening for cold-active protease-producing bacteria from the culture collection of polar microorganisms and characterization of proteolytic activities. Kor J Microbiol 46:73–79

    Article  Google Scholar 

  • Kim EH, Cho KH, Lee YM, Yim JH, Lee HK, Cho J-C, Hong SG (2010b) Diversity of cold-active protease-producing bacteria from Arctic terrestrial and marine environments revealed by enrichment culture. J Microbiol 48:426–432

    Article  PubMed  CAS  Google Scholar 

  • Kim EH, Jeong H-J, Lee YK, Moon EY, Cho J-C, Lee HK, Hong SG (2011) Actimicrobium antarcticum gen. nov., sp. nov., of the family Oxalobacteraceae, isolated from Antarctic coastal seawater. Curr Microbiol 63:213–217

    Article  PubMed  CAS  Google Scholar 

  • Lee YK, Sung KC, Yim JH, Park KJ, Chung H, Lee HK (2005) Isolation of protease-producing Arctic marine bacteria. Ocean Polar Res 27:215–219

    Article  Google Scholar 

  • Lee YK, Hong SG, Cho HH, Cho KH, Lee HK (2007) Dasania marina gen. nov., sp. nov., of the order Pseudomonadales, isolated from Arctic marine sediment. J Microbiol 45:505–509

    PubMed  CAS  Google Scholar 

  • Lee YM, Kim SY, Jung J, Kim EH, Cho KH, Schinner F, Margesin R, Hong SG, Lee HK (2011) Cultured bacterial diversity and human impact on alpine glacier cryoconite. J Microbiol 49:355–362

    Article  PubMed  CAS  Google Scholar 

  • Macura D, Townsley PM (1984) Scandinavian ropy milk—identification and characterization of endogenous ropy lactic Streptococci and their extracellular excretion. J Dairy Sci 67:735–744

    Article  CAS  Google Scholar 

  • Moore LR, Rocap G, Chisholm SW (1998) Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393:464–467

    Article  PubMed  CAS  Google Scholar 

  • Nichols D, Bowman J, Sanderson K, Nichols CM, Lewis T, McMeekin T, Nichols PD (1999) Developments with Antarctic microorganisms: culture collections, bioactivity screening, taxonomy, PUFA production and cold-adapted enzymes. Curr Opin Biotechnol 10:240–246

    Article  PubMed  CAS  Google Scholar 

  • Prosser JI, Bohannan BJM, Curtis TP, Ellis RJ, Firestone MK, Freckleton RP, Green JL, Green LE, Killham K, Lennon JJ, Osborn AM, Solan M, van der Gast CJ, Young JPW (2007) The role of ecological theory in microbial ecology. Nat Rev Microbiol 5:384–392

    Article  PubMed  CAS  Google Scholar 

  • Reddy PVV, Rao SSSN, Pratibha MS, Sailaja B, Kavya B, Manorama RR, Singh SM, Srinivas TN, Shivaji S (2009) Bacterial diversity and bioprospecting for cold-active enzymes from culturable bacteria associated with sediment from a melt water stream of Midtre Lovénbreen glacier, an Arctic glacier. Res Microbiol 160:538–546

    Article  CAS  Google Scholar 

  • Selbmann L, Onofri S, Fenice M, Federici F, Petruccioli M (2002) Production and structural characterization of the exopolysaccharide of the Antarctic fungus Phoma herbarum CCFEE 5080. Res Microbiol 153:585–592

    Article  PubMed  CAS  Google Scholar 

  • Staley JT, Herwig RP (1993) Degradation of particulate organic material in the Antarctic. In: Friedmann EI (ed) Antarctic Microbiology. Wiley-Liss, New York, pp 241–264

    Google Scholar 

  • Vazquez SC, Coria SH, Mac Cormack WP (2004) Extracellular proteases from eight psychrotolerant antarctic strains. Microbiol Res 159:157–166

    Article  PubMed  CAS  Google Scholar 

  • Wieczorek J, Bloom D, Guralnick R, Blum S, Döring M, Giovanni R, Robertson T, Vieglais D (2012) Darwin Core: an evolving community-developed biodiversity data standard. PLoS ONE 7:1–7

    Article  Google Scholar 

Download references

Acknowledgments

We thank Jumin Lee (Bada System) for his help in preparing the figures and tables. This research was supported by the Korea Polar Research Institute (grants PE06050, PE11030, and E411060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon Gyu Hong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 kb)

300_2012_1182_MOESM2_ESM.pptx

Fig. S1 Interface for searching strains. a The advanced search interface for a multi-criteria search. b The result page of a strain search (PPTX 194 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, Y.M., Kim, G., Jung, YJ. et al. Polar and Alpine Microbial Collection (PAMC): a culture collection dedicated to polar and alpine microorganisms. Polar Biol 35, 1433–1438 (2012). https://doi.org/10.1007/s00300-012-1182-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-012-1182-7

Keywords

Navigation