Skip to main content
Log in

Trophic relationships in the nearshore zone of Martel Inlet (King George Island, Antarctica): δ13C stable-isotope analysis

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Carbon isotopic composition was used to assess the linkage between three different potential sources of energy and the community in the shallow coastal zone of Martel Inlet. Stable δ13C ratios ranged from −28.7‰ for the zooplankton plus phytoplankton to −14.4‰ for the grazer Nacella concinna. Microphytobenthos (−16.7‰) was considerably more enriched in 13C than were suspended particulate matter (SPM) (−25.6‰) and macroalgal fragments (−23.6‰ and −21.1‰), indicating that stable carbon isotope analysis might be used to discern the relative contribution of these sources of primary production. There is a benthic-pelagic coupling between plankton, benthic suspensivores, the ophiuroid Ophionotus victoriae and the icefish Chaenocephalus aceratus. Benthic grazers such as N. concinna, deposit feeders such as Yoldia eightsi and the nematodes showed a tight coupling with the microphytobenthos and the sediment. Some omnivorous/depositivorous polychaetes, echinoids, amphipods and the fish Notothenia coriiceps showed values close to the ratios of the macroalgal fragments. Benthic carnivores and/or scavengers were generally enriched over suspensivores and depleted in relation to microphytobenthos grazers, showing a considerable overlap in δ13C values throughout the food web, without any clear coupling with the primary sources of organic matter. The trophic web in the shallow zone of high benthic production and under seasonal ice cover in the Antarctic is more complex than it is in shelf areas, where SPM is the main food source. The soft-bottom community in the shallow zone of Martel Inlet is enriched in 13C due to the significant input of carbon from the microphytobenthos and macroalgal fragments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahn IY (1993) Enhanced particle flux through the biodeposition by the Antarctic suspension-feeding bivalve Laternula elliptica in Marian Cove, King George Island. J Exp Mar Biol Ecol 171:75–90

    Article  Google Scholar 

  • Arntz WE, Brey T, Gallardo VA (1994) Antarctic zoobenthos. Oceanogr Mar Biol Annu Rev 32:241–304

    Google Scholar 

  • Atkinson EG, Wacasey JW (1987) Sedimentation in Arctic Canada: particulate organic carbon flux to shallow marine benthic community in Frobisher Bay. Polar Biol 8:3–7

    CAS  Google Scholar 

  • Barrera-Oro ER, Casaux RJ (1990) Feeding selectivity in Notothenia neglecta, Nybelin, from Potter Cove, South Shetland Islands, Antarctica. Antarct Sci 2:207–213

    Google Scholar 

  • Boutton TW (1991) Stable carbon isotope ratios of natural materials. I. Sample preparation and mass spectrometric analysis. In: Coleman DC, Fry B (eds) Carbon isotope techniques. Academic, New York, pp 155–171

  • Bromberg S, Nonato EF, Corbisier TN, Petti MAV (2000) Polychaetes distribution in the near-shore zone of Martel Inlet, Admiralty Bay (King George Island, Antarctica). Bull Mar Sci 67:175–188

    Google Scholar 

  • Casaux R, Barrera-Oro E, Baroni A, Ramón A (2003) Ecology of inshore notothenioid fish from the Danco Coast, Antarctic Peninsula. Polar Biol 26:157–165

    Google Scholar 

  • Couch CA (1989) Carbon and nitrogen stable isotopes of meiobenthos and their food resources. Estuar Coast Shelf Sci 28:433–441

    Google Scholar 

  • Currin CA, Newell SY, Paerl HW (1995) The role of standing dead Spartina alterniflora and benthic microalgae in salt marsh food webs: considerations based on multiple stable isotope analysis. Mar Ecol Prog Ser 121:99–116

    Google Scholar 

  • Dauby P, Scailteur Y, De Broyer C (2001) Trophic diversity within the eastern Weddell Sea amphipod community. Hydrobiologia 443:69–86

    Article  Google Scholar 

  • Davenport J (1988) The feeding mechanism of Yoldia (=Aequiyoldia) eightsi (Couthouy). Proc R Soc B 232:431–442

    Google Scholar 

  • Dayton PK, Watson D, Palmisano A, Barry JP, Oliver JS, Rivera D (1986) Distribution patterns of benthic microalgal standing stock at McMurdo Sound, Antarctica. Polar Biol 6:207–213

    Google Scholar 

  • Domaneschi O, Silva JRMC da, Porto Neto LR, Passos FD (2002) New perspectives on the dispersal mechanisms of the Antarctic brooding bivalve Mysella charcoti (Lamy, 1906). Polar Biol 25:538–541

    Google Scholar 

  • Dunton KH (2001) δ15N and δ13C measurements of Antarctic peninsula fauna: trophic relationships and assimilation of benthic seaweeds. Am Zool 41:99–112

    Google Scholar 

  • Dunton KH, Saupe SM, Golikov AN, Schell DM, Schonberg SV (1989) Trophic relationships and isotopic gradients among arctic and subarctic marine fauna. Mar Ecol Prog Ser 56:89–97

    Google Scholar 

  • Fischer G (1991) Stable carbon isotope ratios of plankton carbon and sinking organic matter from the Atlantic sector of the Southern Ocean. Mar Chem 35:581–596

    Google Scholar 

  • Fischer G, Wiencke C (1992) Stable carbon isotope composition, depth distribution and fate of macroalgae from the Antarctic Peninsula region. Polar Biol 12:341–348

    Google Scholar 

  • France RL (1995) Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Mar Ecol Prog Ser 124:307–312

    Google Scholar 

  • France R, Loret J, Mathews R, Springer J (1998) Longitudinal variation in zooplankton 13C through the Northwest Passage: inference for incorporation of sea-ice POM into pelagic foodwebs. Polar Biol 20:335–341

    Article  Google Scholar 

  • Fratt DB, Dearborn JH (1984) Feeding biology of the Antarctic brittle star Ophionotus victoriae (Echinodermata: Ophiuroidea). Polar Biol 3:127–139

    Google Scholar 

  • Frazer TK (1996) Stable isotope composition (δ13C and δ15N) of larval krill, Euphausia superba, and two of its potential food sources in winter. J Plankton Res 18:1413–1426

    CAS  Google Scholar 

  • Gambi MC, Castelli A, Guizzardi M (1997) Polychaete populations of the shallow soft bottoms off Terra Nova Bay (Ross Sea, Antarctica): distribution, diversity and biomass. Polar Biol 17:199–210

    Article  Google Scholar 

  • Gilbert NS (1991) Microphytobenthic seasonality in near-shore marine sediments at Signy Island, South Orkney Islands, Antarctica. Estuar Coast Shelf Sci 33:89–104

    Google Scholar 

  • Grebmeier JM, Barry JP (1991) The influence of oceanographic processes on pelagic-benthic coupling in polar regions: a benthic perspective. J Mar Syst 2:495–518

    Article  Google Scholar 

  • Grebmeier JM, McRoy CP, Feder HM (1988) Pelagic-benthic coupling on the shelf of the northern Bering and Chukchi Seas. I. Food supply source and benthic biomass. Mar Ecol Prog Ser 48:57–67

    Google Scholar 

  • Gutt J, Starmans A (1998) Structure and biodiversity of megabenthos in the Weddell and Lazarev seas (Antarctica): ecological role of physical parameters and biological interactions. Polar Biol 20:229–247

    Article  Google Scholar 

  • Hobson KA, Ambrose Jr WG, Renaud PE (1995) Sources of primary production, benthic-pelagic coupling, and trophic relationships within the Northest Water Polynya: insights from δ13C and δ15N analysis. Mar Ecol Prog Ser 128:1–10

    Google Scholar 

  • Hodum PJ, Hobson KA (2000) Trophic relationships among Antarctic fulmarine petrels: insights into dietary overlap and chick provisioning strategies inferred from stable-isotope (δ15N and δ13C) analyses. Mar Ecol Prog Ser 198:273–281

    Google Scholar 

  • Iken K, Quartino ML, Barrera-Oro E, Palermo J, Wiencke C, Brey T (1998) Trophic relations between macroalgae and herbivores. Ber Polarforsch 299:201–206

    Google Scholar 

  • Iken K, Amsler CD, Hubbard JM, McClintock JB, Baker BJ (2001) Preliminary results on secondary metabolites from Antarctic brown algae and their ecological relevance. J Phycol 37:26–26

    Google Scholar 

  • Jazdzewski K, Jurasz W, Kittel W, Presler E, Presler P, Sicinski J (1986) Abundance and biomass estimates of the benthic fauna in Admiralty Bay, King George Island, South Shetland Islands. Polar Biol 6:5–16

    Google Scholar 

  • Kaehler S, Pakhomonov EA, McQuaid CD (2000) Trophic structure of the marine food web at the Prince Edward Islands (Southern Ocean) determined by δ13C and δ15N analysis. Mar Ecol Prog Ser 208:13–20

    Google Scholar 

  • Kozlov AN, Pinskaya IA, Podrazhanskaya SG, Tarverdieva MI (1988) Feeding of glassfishes in different regions of the Atlantic sector of Antarctica. J Ichthyol 28:802–811

    Google Scholar 

  • Linkowski TB, Presler P, Zukowski C (1983) Food habitats of nototheniid fishes (Nototheniidae) in Admiralty Bay (King George Island, South Shetland Islands). Pol Polar Res 4:79–95

    Google Scholar 

  • Lipski M (1987) Variations of physical conditions, nutrients and chlorophyll a contents in Admiralty Bay (King George Island, South Shetland Islands, 1979). Pol Polar Res 8:307–332

    Google Scholar 

  • Michener RH, Schell DM (1994) Stable isotopes ratios as tracers in marine aquatic foodwebs. In: Lajtha K, Michener RH (eds) Stable isotopes in ecology and environmental sciences. Blackwell, Oxford, pp 138–157

  • Mills EL, Pittman K, Tan FC (1984) Food-web structure on the Scotian Shelf, eastern Canada: a study using 13C as a food-chain tracer. Rapp P-V Réun Cons Int Explor Mer 183:111–118

    Google Scholar 

  • Nonato EF, Brito TAS, Paiva PC, Petti MAV (1992) Programa Antártico Brasileiro: Projeto “Bionomia da fauna bentônica Antártica”. Atividades subaquáticas realizadas na Baía do Almirantado a partir da VI Expedição (1988). Relat Int Inst Oceanogr Univ São Paulo 33:1–12

  • Nonato EF, Brito TAS, Paiva PC, Petti MAV, Corbisier TN (2000) Benthic megafauna of the nearshore zone of Admiralty Bay (King George Island, South Shetland Islands, Antarctica): depth zonation and underwater observations. Polar Biol 23:580–588

    Article  Google Scholar 

  • Peck LS, Bullough LW (1993) Growth and population structure in the infaunal bivalve Yoldia eightsi in relation to iceberg activity at Signy Island, Antarctica. Mar Biol 117:235–241

    Google Scholar 

  • Perissinotto R, Pakhomov EA, McQuaid CD, Froneman PW (1997) In situ grazing rates and daily ration of Antarctic krill Euphausia superba feeding on phytoplankton at the Antarctic Polar Front and the Marginal Ice Zone. Mar Ecol Prog Ser 160:77–91

    Google Scholar 

  • Petersen GH, Curtis MA (1980) Differences in energy flow through major components of subarctic, temperate and tropical marine shelf ecosystems. Dana 1:53–64

    Google Scholar 

  • Picken GB (1980) Reproductive adaptation of Antarctic benthic invertebrates. Biol J Linn Soc 14:67–75

    Google Scholar 

  • Presler P (1986) Necrophagous invertebrates of the Admiralty Bay of King George Island (South Shetland Islands, Antarctica). Pol Polar Res 7:25–61

    Google Scholar 

  • Rakusa-Suszczewski S (1995) The hydrography of Admiralty Bay and its inlets, coves and lagoons (King George Island, Antarctica). Pol Polar Res 16:61-70

    Google Scholar 

  • Rau GH, Sweeney RE, Kaplan IR (1982) Plankton 13C:12C ratio changes with latitude: differences between northern and southern oceans. Deep-Sea Res 29:1035–1039

    Google Scholar 

  • Rau GH, Takahashi T, Des Marais DJ (1989) Latitudinal variation in plankton δ13C: implications for CO2 and productivity in past oceans. Nature 341:516–518

    CAS  PubMed  Google Scholar 

  • Rau GH, Takahashi T, Des Marais DJ, Sullivan CW (1991a) Particulate organic matter δ13C variations across the Drake Passage. J Geophys Res 96:15131–15135

    CAS  PubMed  Google Scholar 

  • Rau GH, Hopkins TL, Torres JJ (1991b) 15N/14N and 13C/12C in Weddell Sea invertebrates: implications for feeding diversity. Mar Ecol Prog Ser 77:1–6

    CAS  Google Scholar 

  • Riera P, Richard P, Grémare A, Blanchard G (1996) Food source of intertidal nematodes in the Bay of Marennes-Oléron (France), as determined by dual stable isotope analysis. Mar Ecol Prog Ser 142:303–309

    CAS  Google Scholar 

  • Sackett WM, Eadie BJ, Exner ME (1974) Stable isotope composition of organic carbon in recent antarctic sediments. In: Tissot B, Bienner F (eds) Advances in organic geochemistry. Editions Technip, Paris, pp 661–671

  • Skowronski RSP (2002) Distribuição espacial e variação temporal da meiofauna, com ênfase para o grupo Nematoda, na Enseada Martel (Antártica). PhD thesis, University of São Paulo

  • Skowronski RSP, Corbisier TN (2002) Meiofauna distribution in Martel Inlet, King George Island (Antarctica): sediment features versus food availability. Polar Biol 25:126–134

    Google Scholar 

  • Skowronski RSP, Corbisier TN, Robles FR (1998) Meiofauna along a coastal transect in Admiralty Bay, King George Island (Antarctica). Pesq Antárt Bras 3:1–16

    Google Scholar 

  • Thompson PA, Calvert SE (1994) Carbon-isotope fractionation by a marine diatom: the influence of irradiance, daylength, pH, and nitrogen source. Limnol Oceanogr 39:1835–1844

    CAS  Google Scholar 

  • Wada E, Terazaki M, Kabaya Y, Nemoto T (1987) 15N and 13C abundances in the Antarctic Ocean with emphasis on the biogeochemical structure of the food web. Deep-Sea Res 34:829–841

    Google Scholar 

  • Wägele JW, Brito TAS (1990) Die sublitorale fauna der maritimen Antarktis Erste unterwasserbeobachtungen in der Admiralitäsbucht. Natur Mus 120:269–304

    Google Scholar 

  • Wassman P (1991) Dynamics of primary production and sedimentation in shallow fjords and polls of western Norway. Oceanogr Mar Biol Annu Rev 29:87–154

    Google Scholar 

Download references

Acknowledgements

This research project was made possible through support provided by the CNPq (Conselho Nacional de Pesquisa e Desenvolvimento), SeCIRM (Secretaria da Comissão Interministerial para os Recursos do Mar), under the scope of PROANTAR (Brazilian Antarctic Program) and the Instituto Oceanográfico, Universidade de São Paulo. Special thanks are due to the Volkswagen Foundation for the donation of the diving gear and to Luciano C. Candisani for the help given with the diving, and to Marizilda Magro for the drawings. We also thank Dr Claude De Broyer for his valuable help and two anonymous reviewers for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thaïs N. Corbisier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corbisier, T.N., Petti, M.A.V., Skowronski, R.S.P. et al. Trophic relationships in the nearshore zone of Martel Inlet (King George Island, Antarctica): δ13C stable-isotope analysis. Polar Biol 27, 75–82 (2004). https://doi.org/10.1007/s00300-003-0567-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-003-0567-z

Keywords

Navigation