Skip to main content
Log in

Epigenetic modifications and miRNAs determine the transition of somatic cells into somatic embryos

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

This review discusses the epigenetic changes during somatic embryo (SE) development, highlights the genes and miRNAs involved in the transition of somatic cells into SEs as a result of epigenetic changes, and draws insights on biotechnological opportunities to study SE development.

Abstract

Somatic embryogenesis from somatic cells occurs in a series of steps. The transition of somatic cells into somatic embryos (SEs) is the most critical step under genetic and epigenetic regulations. Major regulatory genes such as SERK, WUS, BBM, FUS3/FUSA3, AGL15, and PKL, control SE steps and development by turning on and off other regulatory genes. Gene transcription profiles of somatic cells during SE development is the result of epigenetic changes, such as DNA and histone protein modifications, that control and decide the fate of SE formation. Depending on the type of somatic cells and the treatment with plant growth regulators, epigenetic changes take place dynamically. Either hypermethylation or hypomethylation of SE-related genes promotes the transition of somatic cells. For example, the reduced levels of DNA methylation of SERK and WUS promotes SE initiation. Histone modifications also promote SE induction by regulating SE-related genes in somatic cells. In addition, miRNAs contribute to the various stages of SE by regulating the expression of auxin signaling pathway genes (TIR1, AFB2, ARF6, and ARF8), transcription factors (CUC1 and CUC2), and growth-regulating factors (GRFs) involved in SE formation. These epigenetic and miRNA functions are unique and have the potential to regenerate bipolar structures from somatic cells when a pluripotent state is induced. However, an integrated overview of the key regulators involved in SE development and downstream processes is lacking. Therefore, this review discusses epigenetic modifications involved in SE development, SE-related genes and miRNAs associated with epigenetics, and common cis-regulatory elements in the promoters of SE-related genes. Finally, we highlight future biotechnological opportunities to alter epigenetic pathways using the genome editing tool and to study the transition mechanism of somatic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article and its supplementary information files.

References

  • Aida M, Ishida T, Tasaka M (1999) Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: Interaction among the cup-shaped cotyledon and shoot meristemless genes. Development 126:1563–1570

    Article  CAS  PubMed  Google Scholar 

  • Alejandri-Ramírez ND, Chávez-Hernández EC, Contreras-Guerra JL, Reyes JLD, TD (2018) Small RNA dfferential expression and regulation in Tuxpeño maize embryogenic callus induction and establishment. Plant Physiol Biochem 122:78–89

  • Baudino S, Hansen S, Brettschneider R, Hecht VF, Dresselhaus T, Lorz H, Dumas C, Rogowsky PM (2001) Molecular characterisation of two novel maize LRR receptor-like kinases, which belong to the SERK gene family. Planta 213:1–10

    Article  CAS  PubMed  Google Scholar 

  • Bednarek PT, Orłowska R (2020) Plant tissue culture environment as a switch-key of (epi)genetic changes. Plant Cell Tiss Organ Cult 140:245–257

    Article  Google Scholar 

  • Berdasco M, Alcazar R, Garcia-Ortiz MV, Ballestar E, Fernandez AF, Roldan-Arjona T, Tiburcio AF, Altabella T, Buisine N, Quesneville H, Baudry A, Lepiniec L, Alaminos M, Rodriguez R, Lloyd A, Colot V, Bender J, Canal MJ, Esteller M, Fraga MF (2008) Promoter DNA hypermethylation and gene repression in undifferentiated Arabidopsis cells. PLoS ONE 3:e3306

    Article  PubMed  PubMed Central  Google Scholar 

  • Berenguer E, Barany I, Solis MT, Perez-Perez Y, Risueno MC, Testillano PS (2017) Inhibition of Histone H3K9 methylation by BIX-01294 promotes stress-induced microspore totipotency and enhances embryogenesis initiation. Front Plant Sci 8:1161

    Article  PubMed  PubMed Central  Google Scholar 

  • Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44

    Article  CAS  PubMed  Google Scholar 

  • Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu CM, van Lammeren AA, Miki BL, Custers JB, van Lookeren Campagne MM (2002) Ectopic expression of baby boom triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouyer D, Roudier F, Heese M, Andersen ED, Gey D, Nowack MK, Goodrich J, Renou JP, Grini PE, Colot V, Schnittger A (2011) Polycomb repressive complex 2 controls the embryo-to-seedling phase transition. PLoS Genet 7:e1002014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breuninger H, Rikirsch E, Hermann M, Ueda M, Laux T (2008) Differential expression of WOX genes mediates apical-basal axis formation in the Arabidopsis embryo. Dev Cell 14:867–876

    Article  CAS  PubMed  Google Scholar 

  • Busk PK, Pages M (1998) Regulation of abscisic acid-induced transcription. Plant Mol Biol 37:425–435

    Article  CAS  PubMed  Google Scholar 

  • Campos-Boza S, Vinas M, Solórzano-Cascante P, Holst A, Steinmacher DA, Guerra MP, Jiménez VM (2022) Somatic embryogenesis and plant regeneration from transverse thin cell layers of adult peach palm (Bactris gasipaes) lateral offshoots. Front Plant Sci 13:995307

    Article  PubMed  PubMed Central  Google Scholar 

  • Ceasar SA, Rajan V, Prykhozhij SV, Berman JN, Ignacimuthu S (2016) Insert, remove or replace: a highly advanced genome editing system using CRISPR/Cas9. Biochim Biophys Acta 1863:2333–2344

    Article  CAS  PubMed  Google Scholar 

  • Ceasar SA, Maharajan T, Hillary VE, Ajeesh Krishna TP (2022) Insights to improve the plant nutrient transport by CRISPR/Cas system. Biotechnol Adv 59:107963

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarty D, Yu KW, Paek KY (2003) Detection of dna methylation changes during somatic embryogenesis of siberian ginseng (Eleuterococcus senticosus). Plant Sci 165:61–68

    Article  CAS  Google Scholar 

  • Chanvivattana Y, Bishopp A, Schubert D, Stock C, Moon YH, Sung ZR, Goodrich J (2004) Interaction of polycomb-group proteins controlling flowering in Arabidopsis. Development 131:5263–5276

    Article  CAS  PubMed  Google Scholar 

  • Chavez-Hernandez EC, Alejandri-Ramirez ND, Juarez-Gonzalez VT, Dinkova TD (2015) Maize miRNA and target regulation in response to hormone depletion and light exposure during somatic embryogenesis. Front Plant Sci 6:555

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen D, Molitor A, Liu C, Shen WH (2010) The Arabidopsis PRC1-like ring-finger proteins are necessary for repression of embryonic traits during vegetative growth. Cell Res 20:1332–1344

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Xu X, Zhang S, Munir N, Zhu C, Zhang Z, Chen Y, Xuhan X, Lin Y, Lai Z (2022) Genome-wide circular RNA profiling and competing endogenous RNA regulatory network analysis provide new insights into the molecular mechanisms underlying early somatic embryogenesis in Dimocarpus longan Lour. Tree Physiol 42:1876–1898

    Article  CAS  PubMed  Google Scholar 

  • Chu Z, Chen J, Xu H, Dong Z, Chen F, Cui D (2016) Identification and comparative analysis of microRNA in wheat (Triticum aestivum L.) callus derived from mature and immature embryos during in vitro culture. Front Plant Sci 7:1302

  • Chug A, Khurana JP (2002) Gene expression during somatic embryogenesis-recent advances. Curr Sci 83:715–730

    Google Scholar 

  • Ci H, Li C, Aung TT, Wang S, Yun C, Wang F, Ren X, Zhang X (2022) A comparative transcriptome analysis reveals the molecular mechanisms that underlie somatic embryogenesis in Peaonia ostii “Fengdan.” Int J Mol Sci 23:10595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dal Santo S, De Paoli E, Pagliarani C, Amato A, Celii M, Boccacci P, Zenoni S, Gambino G, Perrone I (2022) Stress responses and epigenomic instability mark the loss of somatic embryogenesis competence in grapevine. Plant Physiol 188:490–508

    Article  CAS  Google Scholar 

  • de Carvalho SR, Luis ZG, Scherwinski-Pereira JE (2012) Differential responses to somatic embryogenesis of different genotypes of Brazilian oil palm (Elaeis guineensis Jacq.). Plant Cell Tiss Organ Cult 111:59–67

    Article  Google Scholar 

  • de la Paz Sanchez M, Aceves-García P, Petrone E, Steckenborn S, Vega-León R, Álvarez-Buylla ER, Garay-Arroyo A, García-Ponce B (2015) The impact of polycomb group (PcG) and trithorax group (TrxG) epigenetic factors in plant plasticity. New Phytol 208:684–694

    Article  PubMed  Google Scholar 

  • De Oliveira SM, Romano E, Yotoko KSC, Tinoco MLP, Andrade Diaz BB, Aragao FJL (2005) Characterisation of the cacao somatic embryogenesis receptor-like kinase (SERK) gene expressed during somatic embryogenesis. Plant Sci 168:723–729

    Article  Google Scholar 

  • De-la-Pena C, Nic-Can GI, Galaz-Avalos RM, Avilez-Montalvo R, Loyola-Vargas VM (2015) The role of chromatin modifications in somatic embryogenesis in plants. Front Plant Sci 6:635

    Article  PubMed  PubMed Central  Google Scholar 

  • Egertsdotter U, Ahmad I, Clapham D (2019) Automation and scale up of somatic embryogenesis for commercial plant production, with emphasis on Conifers. Front Plant Sci 10:109

    Article  PubMed  PubMed Central  Google Scholar 

  • Elhiti M, Stasolla C (2022) Transduction of signals during somatic embryogenesis. Plants (basel, Switzerland) 11:178

    CAS  PubMed  Google Scholar 

  • Elhiti M, Stasolla C, Wang A (2013) Molecular regulation of plant somatic embryogenesis. In Vitro Cell Dev Biol Plant 49:631–642

    Article  Google Scholar 

  • El-Tantawy AA, Solis MT, Risueno MC, Testillano PS (2014) Changes in DNA methylation levels and nuclear distribution patterns after microspore reprogramming to embryogenesis in barley. Cytogenet Genome Res 143:200–208

    Article  CAS  PubMed  Google Scholar 

  • Fal K, Tomkova D, Vachon G, Chabouté M-E, Berr A, Carles CC (2021) Chromatin manipulation and editing: challenges, new technologies and their use in plants. Int J Mol Sci 22:512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fehér A (2019) Callus, dedifferentiation, totipotency, somatic embryogenesis: What these terms mean in the era of molecular plant biology? Front Plant Sci 10:536

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng MQ, Lu MD, Long JM, Yin ZP, Jiang N, Wang PB, Liu Y, Guo WW, Wu XM (2022) miR156 regulates somatic embryogenesis by modulating starch accumulation in citrus. J Exp Bot 73:6170–6185

    Article  CAS  PubMed  Google Scholar 

  • Ferreira JCB, de Araújo Silva-Cardoso IM, de Oliveira MR, Scherwinski-Pereira JE (2022) Somatic embryogenesis and plant regeneration from zygotic embryos of the palm tree Euterpe precatoria Mart. Plant Cell Tiss Organ Cult 148:667–686

    Article  CAS  Google Scholar 

  • Gallego-Bartolomé J (2020) DNA methylation in plants: mechanisms and tools for targeted manipulation. New Phytol 227:38–44

    Article  PubMed  Google Scholar 

  • Gallois JL, Nora FR, Mizukami Y, Sablowski R (2004) Wuschel induces shoot stem cell activity and developmental plasticity in the root meristem. Genes Dev 18:375–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao C, Wang P, Zhao S, Zhao C, Xia H, Hou L, Ju Z, Zhang Y, Li C, Wang X (2017) Small RNA profiling and degradome analysis reveal regulation of microRNA in peanut embryogenesis and early pod development. BMC Genom 18:220

    Article  Google Scholar 

  • Gao Y, Cui Y, Zhao R, Chen X, Zhang J, Zhao J, Kong L (2022) Cryo-treatment enhances the embryogenicity of mature somatic embryos via the lncRNA-miRNA-mRNA network in white spruce. Int J Mol Sci 23:1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia C, Furtado de Almeida AA, Costa M, Britto D, Correa F, Mangabeira P, Silva L, Silva J, Royaert S, Marelli JP (2022) Single-base resolution methylomes of somatic embryogenesis in Theobroma cacao L. reveal epigenome modifications associated with somatic embryo abnormalities. Scientific reports 12:15097

  • Ghoshal B, Picard CL, Vong B, Feng S, Jacobsen SE (2021) CRISPR-based targeting of DNA methylation in Arabidopsis thaliana by a bacterial CG-specific DNA methyltransferase. Proc Natl Acad Sci U S A 118:e2125016118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godel-Jedrychowska K, Kulinska-Lukaszek K, Horstman A, Soriano M, Li M, Malota K, Boutilier K, Kurczynska EU (2020) Symplasmic isolation marks cell fate changes during somatic embryogenesis. J Exp Bot 71:2612–2628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grafi G, Zemach A, Pitto L (2007) Methyl-CpG-binding domain (MBD) proteins in plants. Biochim Biophys Acta 1769:287–294

    Article  CAS  PubMed  Google Scholar 

  • Grafi G, Florentin A, Ransbotyn V, Morgenstern Y (2011) The stem cell state in plant development and in response to stress. Front Plant Sci 2:53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grzybkowska D, Morończyk J, Wójcikowska B, MD. G (2018) Azacitidine (5-azac)-treatment and mutations in dna methylase genes affect embryogenic response and expression of the genes that are involved in somatic embryogenesis in Arabidopsis. Plant Growth Regul 85:243-256

  • Guan Y, Li S-G, Fan X-F, Su Z-H (2016) Application of somatic embryogenesis in woody plants. Front Plant Sci 7:938

    Article  PubMed  PubMed Central  Google Scholar 

  • Gulzar B, Mujib A, Malik MQ, Sayeed R, Mamgain J, Ejaz B (2020) Genes, proteins and other networks regulating somatic embryogenesis in plants. J Genet Eng Biotechnol 18:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo F, Liu C, Xia H, Bi Y, Zhao C, Zhao S, Hou L, Li F, Wang X (2013) Induced expression of AtLEC1 and AtLEC2 differentially promotes somatic embryogenesis in transgenic tobacco plants. PLoS ONE 8:e71714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haecker A, Gross-Hardt R, Geiges B, Sarkar A, Breuninger H, Herrmann M, Laux T (2004) Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131:657–668

    Article  CAS  PubMed  Google Scholar 

  • Han X, Wang J, Zhang Y, Kong Y, Dong H, Feng X, Li T, Zhou C, Yu J, Xin D, Chen Q, Qi Z (2023) Changes in the m6A RNA methylome accompany the promotion of soybean root growth by rhizobia under cadmium stress. J Hazard Mater 441:129843

    Article  CAS  PubMed  Google Scholar 

  • Hanh NTM, Tung HT, Khai HD, Cuong DM, Luan VQ, Mai NTN, Anh TTL, Van Le B, Nhut DT (2022) Efficient somatic embryogenesis and regeneration from leaf main vein and petiole of Actinidia chinensis planch. via thin cell layer culture technology. Sci Hortic 298:110986

  • Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt EDL, Boutilier K, Grossniklaus U, De Vries SC (2001) The Arabidopsis somatic embryogenesis receptor kinase 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 127:803–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heringer A, Steinmacher D, Fraga HF, Vieira L, Ree J, Guerra M (2013) Global DNA methylation profiles of somatic embryos of peach palm (Bactris gasipaes Kunth) are influenced by cryoprotectants and droplet-vitrification cryopreservation. Plant Cell Tiss Organ Cult 114:365–372

    Article  CAS  Google Scholar 

  • Hernández-Castellano S, Andrade-Marcial M, Aguilar-Méndez ED, Loyola-Vargas VM, de Folter S, De-la-Peña C (2022) MiRNA expression analysis during somatic embryogenesis in Coffea canephora. Plant Cell Tiss Organ Cult 150:177–190

    Article  Google Scholar 

  • Hollick JB (2008) Sensing the epigenome. Trends Plant Sci 13:398–404

    Article  CAS  PubMed  Google Scholar 

  • Horstman A, Bemer M, Boutilier K (2017a) A transcriptional view on somatic embryogenesis. Regeneration (oxf) 4:201–216

    Article  PubMed  Google Scholar 

  • Horstman A, Li M, Heidmann I, Weemen M, Chen B, Muino JM, Angenent GC, Boutilier K (2017b) The baby boom transcription factor activates the LEC1-ABI3-FUS3-LEC2 network to induce somatic embryogenesis. Plant Physiol 175:848–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howlader J, Park J-I, Robin AH, Sumi KR, Nou I-S (2017) Identification, characterization and expression profiling of stress-related genes in Easter Lily (Lilium formolongi). Genes 8:172

    Article  PubMed Central  Google Scholar 

  • Huang H, Han SS, Wang Y, Zhang XZ, Han ZH (2012) Variations in leaf morphology and DNA methylation following in vitro culture of Malus xiaojinensis. Plant Cell Tiss Organ Cult 111:153–161

    Article  CAS  Google Scholar 

  • Ikeda M, Umehara M, Kamada H (2006) Embryogenesis-related genes; Its expression and roles during somatic and zygotic embryogenesis in carrot and Arabidopsis. Plant Biotechnol 23:153–161

    Article  CAS  Google Scholar 

  • Ikeda M, Mitsuda N, Ohme-Takagi M (2009) Arabidopsis wuschel is a bifunctional transcription factor that acts as a repressor in stem cell regulation and as an activator in floral patterning. Plant Cell 21:3493–3505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeuchi M, Iwase A, Rymen B, Harashima H, Shibata M, Ohnuma M, Breuer C, Morao AK, de Lucas M, De Veylder L, Goodrich J, Brady SM, Roudier F, Sugimoto K (2015) PRC2 represses dedifferentiation of mature somatic cells in Arabidopsis. Nat Plants 1:15089

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Takaya K, Kurata N (2005) Expression of SERK family receptor-like protein kinase genes in rice. Biochim Biophys Acta 1730:253–258

    Article  CAS  PubMed  Google Scholar 

  • Jaligot E, Rival A, Beulé T, Dussert S, Verdeil JL (2000) Somaclonal variation in oil palm (Elaeis guineensis Jacq.): the DNA methylation hypothesis. Plant Cell Rep 19:684–690

    Article  CAS  PubMed  Google Scholar 

  • Ji L, Mathioni SM, Johnson S, Tucker D, Bewick AJ, Do Kim K, Daron J, Slotkin RK, Jackson SA, Parrott WA, Meyers BC, Schmitz RJ (2019) Genome-wide reinforcement of DNA methylation occurs during somatic embryogenesis in soybean. Plant Cell 31:2315–2331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji Z, Zhou W, Hou W, Ji H (2020) Single-cell ATAC-seq signal extraction and enhancement with SCATE. Genome Biol 21:161

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang F, Xu X, Liu H, Zhu J (2015) DRM1 and DRM2 are involved in Arabidopsis callus formation. Plant Cell Tiss Organ Cult 123:221–228

    Article  CAS  Google Scholar 

  • Joshi S, Paul P, Hartman JM, Perry SE (2022) AGL15 promotion of somatic embryogenesis: Role and molecular mechanism. Front Plant Sci 13:861556

    Article  PubMed  PubMed Central  Google Scholar 

  • Junker A, Monke G, Rutten T, Keilwagen J, Seifert M, Thi TM, Renou JP, Balzergue S, Viehover P, Hahnel U, Ludwig-Muller J, Altschmied L, Conrad U, Weisshaar B, Baumlein H (2012) Elongation-related functions of leafy cotyledon1 during the development of Arabidopsis thaliana. Plant J 71:427–442

    Article  CAS  PubMed  Google Scholar 

  • Kagaya Y, Toyoshima R, Okuda R, Usui H, Yamamoto A, Hattori T (2005) Leafy cotyledon1 controls seed storage protein genes through its regulation of fusca3 and abscisic acid insensitive3. Plant Cell Physiol 46:399–406

    Article  CAS  PubMed  Google Scholar 

  • Karami O, Rahimi A, Mak P, Horstman A, Boutilier K, Compier M, van der Zaal B, Offringa R (2021) An Arabidopsis AT-hook motif nuclear protein mediates somatic embryogenesis and coinciding genome duplication. Nat Commun 12:2508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karim R, Tan YS, Singh P, Khalid N, Harikrishna JA (2018) Expression and DNA methylation of SERK, BBM, LEC2 and WUS genes in in vitro cultures of Boesenbergia rotunda (L.) Mansf. Physiol Mol Biol Plants 24:741–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanday I, Santos-Medellín C, Sundaresan V (2023) Somatic embryo initiation by rice baby boom1 involves activation of zygote-expressed auxin biosynthesis genes. New Phytol 238:673–687

    Article  CAS  PubMed  Google Scholar 

  • Kim HU, Jung SJ, Lee KR, Kim EH, Lee SM, Roh KH, Kim JB (2013) Ectopic overexpression of castor bean leafy cotyledon2 (LEC2) in Arabidopsis triggers the expression of genes that encode regulators of seed maturation and oil body proteins in vegetative tissues. FEBS Open Bio 4:25–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar V, van Staden J (2017) New insights into plant somatic embryogenesis: an epigenetic view. Acta Physiol Plant 39:194

    Article  Google Scholar 

  • Kwon CS, Hibara K, Pfluger J, Bezhani S, Metha H, Aida M, Tasaka M, Wagner D (2006) A role for chromatin remodeling in regulation of CUC gene expression in the Arabidopsis cotyledon boundary. Development 133:3223–3230

    Article  CAS  PubMed  Google Scholar 

  • Ladstätter S, Tachibana K (2018) Genomic insights into chromatin reprogramming to totipotency in embryos. J Cell Biol 218:70–82

    Article  PubMed  Google Scholar 

  • Ledwon A, Gaj MD (2009) Leafy cotyledon2 gene expression and auxin treatment in relation to embryogenic capacity of Arabidopsis somatic cells. Plant Cell Rep 28:1677–1688

    Article  CAS  PubMed  Google Scholar 

  • Leljak-Levanic D, Bauer N, Mihaljevic S, Jelaska S (2004) Changes in DNA methylation during somatic embryogenesis in Cucurbita pepo L. Plant Cell Rep 23:120–127

    Article  CAS  PubMed  Google Scholar 

  • Leljak-Levanić D, Mihaljević S, Jelaska S (2009) Variations in DNA methylation in Picea omorika (Panč) Purk. embryogenic tissue and the ability for embryo maturation. Propag Ornam Plants 9:3–9

    Google Scholar 

  • Li Y, Butenko Y, Grafi G (2005) Histone deacetylation is required for progression through mitosis in tobacco cells. Plant J 41:346–352

    Article  CAS  PubMed  Google Scholar 

  • Li W, Liu H, Cheng ZJ, Su YH, Han HN, Zhang Y, Zhang XS (2011) DNA methylation and histone modifications regulate de novo shoot regeneration in Arabidopsis by modulating wuschel expression and auxin signaling. PLoS Genet 7:e1002243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Chen J, Qiu S, Zhang Y, Wang P, Yang L, Lu Y, Shi J (2012) Deep sequencing and microarray hybridization identify conserved and species-specific microRNAs during somatic embryogenesis in hybrid yellow poplar. PLoS ONE 7:e43451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W-F, Zhang S-G, Han S-Y, Wu T, Zhang J-H, Qi L-W (2013) Regulation of LaMYB33 by miR159 during maintenance of embryogenic potential and somatic embryo maturation in Larix kaempferi (Lamb.) Carr. Plant Cell Tiss Organ Cult 113:131–136

    Article  CAS  Google Scholar 

  • Li ZX, Li SG, Zhang LF, Han SY, Li WF, Xu HY, Yang WH, Liu YL, Fan YR, Qi LW (2016) Over-expression of miR166a inhibits cotyledon formation in somatic embryos and promotes lateral root development in seedlings of Larix leptolepis. Plant Cell Tissue Organ Cult 127:461–473

    Article  CAS  Google Scholar 

  • Li HY, Zhang J, Yang Y, Jia NN, Wang CX, Sun HM (2017a) miR171 and its target gene SCL6 contribute to embryogenic callus induction and torpedo-shaped embryo formation during somatic embryogenesis in two lily species. Plant Cell Tissue Organ Cult 130:591–600

    Article  CAS  Google Scholar 

  • Li Q, Deng C, Xia Y, Kong L, Zhang H, Zhang S, Wang J (2017b) Identification of novel miRNAs and miRNA expression profiling in embryogenic tissues of Picea balfouriana treated by 6-benzylaminopurine. PLoS ONE 12:e0176112

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Wang M, Li Y, Zhang Q, Lindsey K, Daniell H, Jin S, Zhang X (2019) Multi-omics analyses reveal epigenomics basis for cotton somatic embryogenesis through successive regeneration acclimation process. Plant Biotechnol J 17:435–450

    Article  CAS  PubMed  Google Scholar 

  • Li M, Wrobel-Marek J, Heidmann I, Horstman A, Chen B, Reis R, Angenent GC, Boutilier K (2022) Auxin biosynthesis maintains embryo identity and growth during baby boom-induced somatic embryogenesis. Plant Physiol 188:1095–1110

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Lai Z, Lin L, Lai R, Tian Q, Ye W, Zhang D, Yang M, Chen Y, Zhang Z (2015) Endogenous target mimics, microRNA167, and its targets ARF6 and ARF8 during somatic embryo development in Dimocarpus longan Lour. Mol Breed 35:227

    Article  Google Scholar 

  • Long Y, Yang Y, Pan G, Shen Y (2022) New insights into tissue culture plant-regeneration mechanisms. Front Plant Sci 13:926752

    Article  PubMed  PubMed Central  Google Scholar 

  • López-Ruiz BA, Juárez-González V, Chávez-Hernández EC, Dinkova TD (2018) MicroRNA expression and regulation during maize somatic embryogenesis. Methods in Molecular Biology (clifton, NJ) 1815:397–410

    Article  Google Scholar 

  • Loschiavo F, Pitto L, Giuliano G, Torti G, Nuti-Ronchi V, Marazziti D, Vergara R, Orselli S, Terzi M (1989) DNA methylation of embryogenic carrot cell cultures and its variations as caused by mutation, differentiation, hormones and hypomethylating drugs. Theor Appl Genet 77:325–331

    Article  CAS  PubMed  Google Scholar 

  • Lowe K, Wu E, Wang N, Hoerster G, Hastings C, Cho M-J, Scelonge C, Lenderts B, Chamberlin M, Cushatt J, Wang L, Ryan L, Khan T, Chow-Yiu J, Hua W, Yu M, Banh J, Bao Z, Brink K, Igo E, Rudrappa B, Shamseer P, Bruce W, Newman L, Shen B, Zheng P, Bidney D, Falco C, Register J, Zhao Z-Y, Xu D, Jones T, Gordon-Kamm W (2016) Morphogenic regulators baby boom and wuschel improve monocot transformation. Plant Cell 28:1998–2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowe K, La Rota M, Hoerster G, Hastings C, Wang N, Chamberlin M, Wu E, Jones T, Gordon-Kamm W (2018) Rapid genotype “independent” Zea mays L. (maize) transformation via direct somatic embryogenesis. In Vitro Cell DevBiol-Plant 54:240–252

    Article  CAS  Google Scholar 

  • Loyola-Vargas VM, Ochoa-Alejo N (2016) Somatic Embryogenesis. An Overview. In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Somatic embryogenesis: Fundamental aspects and applications. Springer International Publishing, pp 1–8

  • Luján-Soto E, Juárez-González VT, Reyes JL, Dinkova TD (2021) MicroRNA Zma-miR528 versatile regulation on target mRNAs during maize somatic embryogenesis. Int J Mol Sci 22:5310

    Article  PubMed  PubMed Central  Google Scholar 

  • Markulin L, Škiljaica A, Tokić M, Jagić M, Vuk T, Bauer N, Leljak Levanić D (2021) Taking the wheel - de novo DNA methylation as a driving force of plant embryonic development. Front Plant Sci 12:764999–764999

    Article  PubMed  PubMed Central  Google Scholar 

  • Mendez-Hernandez HA, Ledezma-Rodriguez M, Avilez-Montalvo RN, Juarez-Gomez YL, Skeete A, Avilez-Montalvo J, De-la-Pena C, Loyola-Vargas VM (2019) Signaling overview of plant somatic embryogenesis. Front Plant Sci 10:77

    Article  PubMed  PubMed Central  Google Scholar 

  • Mengel A, Ageeva A, Georgii E, Bernhardt J, Wu K, Durner J, Lindermayr C (2017) Nitric oxide modulates histone acetylation at stress genes by inhibition of histone deacetylases. Plant Physiol 173:1434–1452

    Article  CAS  PubMed  Google Scholar 

  • Milutinovic S, Zhuang Q, Niveleau A, Szyf M (2003) Epigenomic stress response. Knockdown of DNA methyltransferase 1 triggers an intra-S-phase arrest of DNA replication and induction of stress response genes. J Biol Chem 278:14985–14995

    Article  CAS  PubMed  Google Scholar 

  • Mozgova I, Munoz-Viana R, Hennig L (2017) PRC2 represses hormone-induced somatic embryogenesis in vegetative tissue of Arabidopsis thaliana. PLoS Genet 13:e1006562

    Article  PubMed  PubMed Central  Google Scholar 

  • Munksgaard D, Mattsson O, Okkels FT (1995) Somatic embryo development in carrot is associated with an increase in levels of S-adenosylmethionine, S-adenosylhomocysteine and DNA methylation. Physiol Plant 93:5–10

    Article  CAS  Google Scholar 

  • Negin B, Shemer O, Sorek Y, Eshed Williams L (2017) Shoot stem cell specification in roots by the wuschel transcription factor. PLoS ONE 12:e0176093

    Article  PubMed  PubMed Central  Google Scholar 

  • Nic-Can GI, Lopez-Torres A, Barredo-Pool F, Wrobel K, Loyola-Vargas VM, Rojas-Herrera R, De-la-Pena C (2013) New insights into somatic embryogenesis: Leafy cotyledon1, baby boom1 and wuschel-related homeobox4 are epigenetically regulated in Coffea canephora. PLoS ONE 8:e72160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noceda C, Salaj T, Pérez M, Viejo M, Cañal MJ, Salaj J, Rodriguez R (2009) DNA demethylation and decrease on free polyamines is associated with the embryogenic capacity of Pinus nigra Arn. cell culture. Trees 23:1285

  • Nolan KE, Irwanto RR, Rose RJ (2003) Auxin up-regulates MtSERK1 expression in both Medicago truncatula root-forming and embryogenic cultures. Plant Physiol 133:218–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowak K, Morończyk J, Grzyb M, Szczygieł-Sommer A, Gaj MD (2022) miR172 regulates WUS during somatic embryogenesis in Arabidopsis via AP2. Cells 11:718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olvera-Carrillo Y, Campos F, Reye sJL, Garciarrubio A, Covarrubias AA (2010) Functional analysis of the group 4 late embryogenesis abundant proteins reveals their relevance in the adaptive response during water deficit in Arabidopsis. Plant physiology 154:373–390

  • Orłowska A, Igielski R, Łagowska K, K˛epczy´ nska E, (2017) Identification of LEC1, L1L and polycomb repressive complex 2 genes and their expression during the induction phase of Medicago truncatula Gaertn. Somatic embryogenesis. Plant Cell Tissue Organ Cult 129:119–132

    Article  Google Scholar 

  • Osorio-Montalvo P, Sáenz-Carbonell L, De-la-Peña C (2018) 5-Azacytidine: a promoter of epigenetic changes in the quest to improve plant somatic embryogenesis. Int J Mol Sci 19:3182

    Article  PubMed  PubMed Central  Google Scholar 

  • Pachota KA, Orłowska R (2022) Effect of copper and silver ions on sequence and DNA methylation changes in triticale regenerants gained via somatic embryogenesis. J Appl Genet 63:663–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pais MS (2019) Somatic embryogenesis induction in woody species: the future after OMICs data assessment. Front Plant Sci 10:240

    Article  PubMed  PubMed Central  Google Scholar 

  • Palmgren G, Mattsson O, Okkels FT (1991) Specific levels of DNA methylation in various tissues, cell lines, and cell types of Daucus carota. Plant Physiol 95:174–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papikian A, Liu W, Gallego-Bartolomé J, Jacobsen SE (2019) Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems. Nat Commun 10:729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paponov IA, Teale WD, Trebar M, Blilou I, Palme K (2005) The PIN auxin efflux facilitators: evolutionary and functional perspectives. Trends Plant Sci 10:170–177

    Article  CAS  PubMed  Google Scholar 

  • Pasternak T, Miskolczi P, Ayaydin F, Mészáros T, Dudits D, Fehér A (2000) Exogenous auxin and cytokinin dependent activation of CDKs and cell division in leaf protoplast-derived cells of alfalfa. Plant Growth Regul 32:129–141

    Article  CAS  Google Scholar 

  • Paul P, Joshi S, Tian R, Diogo Junior R, Chakrabarti M, Perry SE (2022) The MADS-domain factor agamous-like18 promotes somatic embryogenesis. Plant Physiol 188:1617–1631

    Article  CAS  PubMed  Google Scholar 

  • Pencik A, Tureková V, Paulisiç S, Rolcìk J, Strnad M, Mihaljevic S (2015) Ammonium regulates embryogenic potential in Cucurbita pepo through pH-mediated changes in endogenous auxin and abscisic acid. Plant Cell Tiss Organ Cult 122:89–100

    Article  CAS  Google Scholar 

  • Pérez M, Cañal MJ, Toorop PE (2015) Expression analysis of epigenetic and abscisicacid-related genes during maturation of Quercus suber somatic embryos. Plant Cell Tiss Organ Cult 121:353–366

    Article  Google Scholar 

  • Phukan UJ, Jeena GS, Tripathi V, Shukla RK (2018) MaRAP2-4, a waterlogging-responsive ERF from Mentha, regulates bidirectional sugar transporter AtSWEET10 to modulate stress response in Arabidopsis. Plant Biotechnol J 16:221–233

    Article  CAS  PubMed  Google Scholar 

  • Pierroz G (2023) Making babies: how auxin regulates somatic embryogenesis in Arabidopsis tissue culture. Plant J 113:5–6

    Article  CAS  PubMed  Google Scholar 

  • Pila Quinga LA, Pacheco de Freitas Fraga H, do Nascimento Vieira L, Pedro Guerra M (2017) Epigenetics of long-term somatic embryogenesis in Theobroma cacao L.: DNA methylation and recovery of embryogenic potential. Plant Cell Tiss Organ Cult 131:295–305

  • Pilarska M, Malec P, Salaj J, Bartnicki F, Konieczny R (2016) High expression of somatic embryogenesis receptor-like kinase coincides with initiation of various developmental pathways in in vitro culture of Trifolium nigrescens. Protoplasma 253:345–355

    Article  CAS  PubMed  Google Scholar 

  • Pulecio J, Verma N, Mejía-Ramírez E, Huangfu D, Raya A (2017) CRISPR/Cas9-based engineering of the epigenome. Cell Stem Cell 21:431–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi S, Zhao R, Yan J, Fan Y, Huang C, Li H, Chen S, Zhang T, Kong L, Zhao J, Zhang J (2021) Global transcriptome and coexpression network analyses reveal new insights into somatic embryogenesis in hybrid sweetgum (Liquidambar styraciflua × Liquidambar formosana). Front Plant Sci 12:751866

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin Z, Li J, Zhang Y, Xiao Y, Zhang X, Zhong L, Liu H, Chen B (2021) Genome-wide identification of microRNAs involved in the somatic embryogenesis of Eucalyptus. G3 (Bethesda, Md) 11:jkab070

  • Ramakrishnan M, Yrjälä K, Vinod KK, Sharma A, Cho J, Satheesh V, Zhou M (2020) Genetics and genomics of moso bamboo (Phyllostachys edulis): Current status, future challenges, and biotechnological opportunities toward a sustainable bamboo industry. Food Energy Secur 9:e229

    Article  Google Scholar 

  • Ramakrishnan M, Papolu PK, Satish L, Vinod KK, Wei Q, Sharma A, Emamverdian A, Zou L-H, Zhou M (2022a) Redox status of the plant cell determines epigenetic modifications under abiotic stress conditions and during developmental processes. J Adv Res 42:99–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramakrishnan M, Rajan KS, Mullasseri S, Palakkal S, Kalpana K, Sharma A, Zhou M, Vinod KK, Ramasamy S, Wei Q (2022b) The plant epitranscriptome: revisiting pseudouridine and 2’-O-methyl RNA modifications. Plant Biotechnol J 20:1241–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramírez-Mosqueda MA (2022) Perspectives of somatic embryogenesis: concluding remarks. Methods in Molecular Biology (clifton, NJ) 2527:267–270

    Article  Google Scholar 

  • Rider SDJ, Hemm MR, Hostetler HA, Li HC, Chapple C, Ogas J (2004) Metabolic profiling of the Arabidopsis pkl mutant reveals selective derepression of embryonic traits. Planta 219:489–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez Lopez CM, Wetten AC, Wilkinson MJ (2010) Progressive erosion of genetic and epigenetic variation in callus-derived cocoa (Theobroma cacao) plants. New Phytol 186:856–868

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Sanz H, Manzanera J-A, Solís M-T, Gómez-Garay A, Pintos B, Risueño MC, Testillano PS (2014a) Early markers are present in both embryogenesis pathways from microspores and immature zygotic embryos in cork oak, Quercus suber L. BMC Plant Biol 14:224–224

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Sanz H, Moreno-Romero J, Solis MT, Kohler C, Risueno MC, Testillano PS (2014b) Changes in histone methylation and acetylation during microspore reprogramming to embryogenesis occur concomitantly with Bn HKMT and Bn HAT expression and are associated with cell totipotency, proliferation, and differentiation in Brassica napus. Cytogenet Genome Res 143:209–218

    Article  CAS  PubMed  Google Scholar 

  • Rombauts S, Déhais P, Van Montagu M, Rouzé P (1999) PlantCARE, a plant cis-acting regulatory element database. Nucleic Acids Res 27:295–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose RJ (2019) Somatic Embryogenesis in the Medicago truncatula Model: Cellular and Molecular Mechanisms. Front Plant Sci 10:267

    Article  PubMed  PubMed Central  Google Scholar 

  • Sadeghnezhad E, Askari H, Soltani S, Honarvar FJJoABR (2014) Identification and distribution of anaerobic responsive elements (AREs) in genes functional categorization of Arabidopsis thaliana. J Appl Biotechnol Rep 1:135-141

  • Salaün C, Lepiniec L, Dubreucq B (2021) Genetic and molecular control of somatic embryogenesis. Plants 10:1467

    Article  PubMed  PubMed Central  Google Scholar 

  • Santos MO, Aragão FJL (2009) Role of SERK genes in plant environmental response. Plant Signal Behav 4:1111–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos D, Fevereiro P (2002) Loss of DNA methylation affects somatic embryogenesis in Medicago truncatula. Plant Cell Tiss Organ Cult 70:155–161

    Article  CAS  Google Scholar 

  • Sarkar AK, Luijten M, Miyashima S, Lenhard M, Hashimoto T, Nakajima K, Scheres B, Heidstra R, Laux T (2007) Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446:811–814

    Article  CAS  PubMed  Google Scholar 

  • Schmidt EDL, Guzzo F, Toonen MAJ, De Vries SC (1997) A leucine rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062

    Article  CAS  PubMed  Google Scholar 

  • Seto E, Yoshida M (2014) Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol 6:a018713–a018713

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma SK, Millam S, Hein I, Bryan GJ (2008) Cloning and molecular characterisation of a potato SERK gene transcriptionally induced during initiation of somatic embryogenesis. Planta 228:319

    Article  CAS  PubMed  Google Scholar 

  • Shen C, Wang K, Deng X, Chen J (2022) DNA N6-methyldeoxyadenosine in mammals and human disease. Trends Genetics 38:454–467

    Article  CAS  Google Scholar 

  • Shi QF, Long JM, Yin ZP, Jiang N, Feng MQ, Zheng B, Guo WW, Wu XM (2022) miR171 modulates induction of somatic embryogenesis in citrus callus. Plant Cell Rep 41:1403–1415

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui ZH, Abbas ZK, Ansari MW, Khan MN (2019) The role of miRNA in somatic embryogenesis. Genomics 111:1026–1033

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Khurana P (2017) Ectopic expression of Triticum aestivum SERK genes (TaSERKs) control plant growth and development in Arabidopsis. Sci Rep 7:12368

    Article  PubMed  PubMed Central  Google Scholar 

  • Sivanesan I, Nayeem S, Venkidasamy B, Kuppuraj SP, Rn C, Samynathan R (2022) Genetic and epigenetic modes of the regulation of somatic embryogenesis: a review. Biologia Futura 73:259–277

    Article  CAS  PubMed  Google Scholar 

  • Solís MT, El-Tantawy AA, Cano V, Risueño MC, Testillano PS (2015) 5-azacytidine promotes microspore embryogenesis initiation by decreasing global DNA methylation, but prevents subsequent embryo development in rapeseed and barley. Front Plant Sci 6:472

    Article  PubMed  PubMed Central  Google Scholar 

  • Somssich M, Je BI, Simon R, Jackson D (2016) Clavata-wuschel signaling in the shoot meristem. Development 143:3238–3248

    Article  CAS  PubMed  Google Scholar 

  • Song YG, Liu YL, Qiu NW, Dong W (2017) Involvement of histone modification in regulating cup-shaped cotyledon genes during shoot regeneration in Arabidopsis. Biol Plant 61:197–200

    Article  CAS  Google Scholar 

  • Song H, Liu D, Dong S, Zeng L, Wu Z, Zhao P, Zhang L, Chen Z-S, Zou C (2020) Epitranscriptomics and epiproteomics in cancer drug resistance: therapeutic implications. Sig Transduct Target Ther 5:193

    Article  Google Scholar 

  • Stelmach K, Grzebelus E (2023) Plant regeneration from protoplasts of Pastinaca sativa L. via somatic embryogenesis. Plant Cell Tiss Organ Cult 153:205–217

    Article  CAS  Google Scholar 

  • Stelpflug SC, Eichten SR, Hermanson PJ, Springer NM, Kaeppler SM (2014) Consistent and heritable alterations of DNA methylation are induced by tissue culture in maize. Genetics 198:209–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, Fischer RL, Goldberg RB, Harada JJ (2001) Leafy cotyledon2 encodes a B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci U S A 98:11806–11811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su YH, Zhao XY, Liu YB, Zhang CL, O’Neill SD, Zhang XS (2009) Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis. Plant J 59:448–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su YH, Liu YB, Zhou C, LI XM, Zhang XS, (2016) The microRNA167 controls somatic embryogenesis in Arabidopsis through regulating its target genes ARF6 and ARF8. Plant Cell Tiss Organ Cult 124:405–417

    Article  CAS  Google Scholar 

  • Szczygieł-Sommer A, Gaj MD (2019) The miR396-GRF regulatory module controls the embryogenic response in Arabidopsis via an auxin-related pathway. Int J Mol Sci 20:5221

    Article  PubMed  PubMed Central  Google Scholar 

  • Szyrajew K, Bielewicz D, Dolata J, Wójcik AM, Nowak K, Szczygieł-Sommer A, Szweykowska- Kulinska Z, Jarmolowski A, Gaj MD (2017) MicroRNAs are intensively regulated during induction of somatic embryogenesis in Arabidopsis. Front Plant Sci 8:1–16

    Article  Google Scholar 

  • Tanaka M, Kikuchi A, Kamada H (2008) The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination. Plant Physiol 146:149–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao Z, Shen L, Gu X, Wang Y, Yu H, He Y (2017) Embryonic epigenetic reprogramming by a pioneer transcription factor in plants. Nature 551:124–128

    Article  PubMed  Google Scholar 

  • Uddenberg D, Valladares S, Abrahamsson M, Sundstrom JF, Sundas-Larsson A, von Arnold S (2011) Embryogenic potential and expression of embryogenesis-related genes in conifers are affected by treatment with a histone deacetylase inhibitor. Planta 234:527–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Us-Camas R, Rivera-Solís G, Duarte-Aké F, De-La-Pea C (2014) In vitro culture: an epigenetic challenge for plants. Plant Cell Tiss Organ Cult 118:187–201

    Article  CAS  Google Scholar 

  • Venturelli S, Belz RG, Kamper A, Berger A, von Horn K, Wegner A, Bocker A, Zabulon G, Langenecker T, Kohlbacher O, Barneche F, Weigel D, Lauer UM, Bitzer M, Becker C (2015) Plants release precursors of histone deacetylase inhibitors to suppress growth of competitors. Plant Cell 27:3175–3189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verdeil JL, Alemanno L, Niemenak N, Tranbarger TJ (2007) Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends Plant Sci 12:245–252

    Article  CAS  PubMed  Google Scholar 

  • Vetrici MA, Yevtushenko DP, Misra S (2021) Douglas-fir leafy cotyledon1 (PmLEC1) is an active transcription factor during zygotic and somatic embryogenesis. Plant Direct 5:e00333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viejo M, Rodriguez R, Valledor L, Perez M, Canal MJ, Hasbun R (2010) DNA methylation during sexual embryogenesis and implications on the induction of somatic embryogenesis in Castanea sativa Miller. Sex Plant Reprod 23:315–323

    Article  CAS  PubMed  Google Scholar 

  • Wada Y, Ohya H, Yamaguchi Y, Koizumi N, Sano H (2003) Preferential de novo methylation of cytosine residues in non-CpG sequences by a domains rearranged DNA methyltransferase from tobacco plants. J Biol Chem 278:42386–42393

    Article  CAS  PubMed  Google Scholar 

  • Wada N, Ueta R, Osakabe Y, Osakabe K (2020) Precision genome editing in plants: state-of-the-art in CRISPR/Cas9-based genome engineering. BMC Plant Biol 20:234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Perry SE (2013) Identification of direct targets of fusca3, a key regulator of Arabidopsis seed development. Plant Physiol 161:1251–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Qin Q, Sun F, Wang Y, Xu D, Li Z, Fu B (2016) Genome-wide differences in DNA methylation changes in two contrasting rice genotypes in response to drought conditions. Front Plant Sci 7:1675

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang F-X, Shang G-D, Wu L-Y, Xu Z-G, Zhao X-Y, Wang J-W (2020) Chromatin accessibility dynamics and a hierarchical transcriptional regulatory network structure for plant somatic embryogenesis. Dev Cell 54:742-757.e748

    Article  CAS  PubMed  Google Scholar 

  • Wang FX, Shang GD, Wang JW (2022) Towards a hierarchical gene regulatory network underlying somatic embryogenesis. Trends Plant Sci 27:1209–1217

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Ryan L, Sardesai N, Wu E, Lenderts B, Lowe K, Che P, Anand A, Worden A, van Dyk D, Barone P, Svitashev S, Jones T, Gordon-Kamm W (2023) Leaf transformation for efficient random integration and targeted genome modification in maize and sorghum. Nat Plants 1–16

  • Wei Y, Yang C-R, Zhao Z-A (2022) Viable offspring derived from single unfertilized mammalian oocytes. Proc Natl Acad Sci U S A 119:e2115248119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wickramasuriya AM, Dunwell JM (2015) Global scale transcriptome analysis of Arabidopsis embryogenesis in vitro. BMC Genom 16:301

    Article  Google Scholar 

  • Wojcik AM, Gaj MD (2016) miR393 contributes to the embryogenic transition induced in vitro in Arabidopsis via the modification of the tissue sensitivity to auxin treatment. Planta 244:231–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wojcikowska B, Botor M, Moronczyk J, Wojcik AM, Nodzynski T, Karcz J, Gaj MD (2018) Trichostatin A triggers an embryogenic transition in Arabidopsis explants via an auxin-related pathway. Front Plant Sci 9:1353

    Article  PubMed  PubMed Central  Google Scholar 

  • Wojcikowska B, Wojcik AM, Gaj MD (2020) Epigenetic regulation of auxin-induced somatic embryogenesis in plants. Int J Mol Sci 21:2307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu XM, Liu MY, Ge XX, Xu Q, Guo WW (2011) Stage and tissues pecific modulation of ten conserved miRNAs and their targets during somatic embryogenesis of valencia sweet orange. Planta 233:495–505

    Article  CAS  PubMed  Google Scholar 

  • Wu XM, Kou SJ, Liu YL, Fang YN, Xu Q, Guo WW (2015) Genomewide analysis of small RNAs in nonembryogenic and embryogenic tissues of citrus: microRNA- and siRNA-mediated transcript cleavage involved in somatic embryogenesis. Plant Biotechnol J 13:383–394

    Article  PubMed  Google Scholar 

  • Xu M, Li X, Korban SS (2004) DNA-methylation alterations and exchanges during in vitro cellular differentiation in rose (Rosa hybrida L.). Theor Appl Genet 109:899–910

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Zhang C, Xu X, Cai R, Guan Q, Chen X, Chen Y, Zhang Z, XuHan X, Lin Y, Lai Z (2023) Riboflavin mediates m6A modification targeted by miR408, promoting early somatic embryogenesis in longan. Plant Physiol 192:1799–1820

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto N, Kobayashi H, Togashi T, Mori Y, Kikuchi K, Kuriyama K, Tokuji Y (2005) Formation of embryogenic cell clumps from carrot epidermal cells is suppressed by 5-azacytidine, a DNA methylation inhibitor. J Plant Physiol 162:47–54

    Article  CAS  PubMed  Google Scholar 

  • Yan R, Song S, Li H, Sun H (2022) Functional analysis of the eTM-miR171-SCL6 module regulating somatic embryogenesis in Lilium pumilum DC. Fisch. Horticulture research 9:uhac045

  • Yang X, Wang L, Yuan D, Lindsey K, Zhang XJ (2013) Small RNA and degradome sequencing reveal complex miRNA regulation during cotton somatic embryogenesis. J Exp Bot 64:1521–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Ogas J (2009) An epigenetic perspective on developmental regulation of seed genes. Mol Plant 2:610–627

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Clarenz O, Cokus S, Bernatavichute YV, Pellegrini M, Goodrich J, Jacobsen SE (2007) Whole-genome analysis of Histone H3 Lysine 27 trimethylation in Arabidopsis. PLOS Biol 5:e129

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Rider SD Jr, Henderson JT, Fountain M, Chuang K, Kandachar V, Simons A, Edenberg HJ, Romero-Severson J, Muir WM, Ogas J (2008) The CHD3 remodeler pickle promotes trimethylation of histone H3 lysine 27. J Biol Chem 283:22637–22648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang TQ, Lian H, Zhou CM, Xu L, Jiao Y, Wang JW (2017) A two-step model for de novo activation of wuschel during plant shoot regeneration. Plant Cell 29:1073–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng W, Zhang X, Yang Z, Wu J, Li F, Duan L, Liu C, Lu L, Zhang C, Li F (2014) AtWuschel promotes formation of the embryogenic callus in Gossypium hirsutum. PLoS ONE 9:e87502

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng Q, Zheng Y, Ji H, Burnie W, Perry SE (2016) Gene regulation by the AGL15 transcription factor reveals hormone interactions in somatic embryogenesis. Plant Physiol 172:2374–2387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Deng K, Cheng Y, Zhong Z, Tian L, Tang X, Tang A, Zheng X, Zhang T, Qi Y, Zhang Y (2017) CRISPR-Cas9 based genome editing reveals new insights into microRNA function and regulation in rice. Front Plant Sci 8:1598

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Gao G, Tang R, Wang W, Wang Y, Tian S, Qin G (2022a) m6A-mediated regulation of crop development and stress responses. Plant Biotechnol J 20:1447–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Yarra R, Jin L, Yang Y, Cao H, Zhao Z (2022b) Identification and expression analysis of histone modification gene (HM) family during somatic embryogenesis of oil palm. BMC Genom 23:11

    Article  CAS  Google Scholar 

  • Zhu C, Perry SE (2005) Control of expression and autoregulation of AGL15, a member of the MADS-box family. Plant J 41:583–594

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous reviewers for their valuable time and insightful comments, which greatly improved the quality of the manuscript. We apologize to those whose original work(s) could not be included in this review owing to space limitations.

Funding

Preparation of this review was supported by a grant from the Jiangxi “Shuangqian” Program (Grant No. S2019DQKJ2030), the Qing Lan Project of Jiangsu Higher Education Institutions, the Natural Science Foundation for Distinguished Young Scholars of Nanjing Forestry University (Grant No. JC2019004), the Project for Groundbreaking Achievements of Nanjing Forestry University (Grant No. 202211), and also a project funded by the Priority Academic Programme Development of Jiangsu Higher Education Institutions. The authors are also grateful for the Young Foreign Talent Program (Grant No. QN2022014012L) and the support of Metasequoia Faculty Research Start-up Funding (Grant No. 163100028) at the Bamboo Research Institute, Nanjing Forestry University, for the first author MR.

Author information

Authors and Affiliations

Authors

Contributions

MR planned, designed and wrote the review together with MZ, KKV, and QW. MR, KKV, and QW outlined the review. MR drew the images with QW, DJA, and KKV. MR, KKV, and TM analyzed the cis-acting elements of major regulatory genes involved in SE. AC and MR wrote the alteration of SE-epigenetic modification using the genome editing tool. MR, KKV, AC, AS, MZ, ZA, and QW edited and revised the review. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Qiang Wei.

Ethics declarations

Conflict of interest

All the authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Communicated by Wusheng Liu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 36 KB)

Supplementary file2 (XLSX 13 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramakrishnan, M., Zhou, M., Ceasar, S.A. et al. Epigenetic modifications and miRNAs determine the transition of somatic cells into somatic embryos. Plant Cell Rep 42, 1845–1873 (2023). https://doi.org/10.1007/s00299-023-03071-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-023-03071-0

Keywords

Navigation