Skip to main content
Log in

CgPG21 is involved in the degradation of the cell wall during the secretory cavity formation in Citrus grandis ‘Tomentosa’ fruits

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Main conclusion

CgPG21 is mainly located in the cell wall, participates in the intercellular layer degradation of the cell wall during the formation of secretory cavity in the intercellular space-forming and lumen-expanding stages.

Abstract

The secretory cavity is a common structure in Citrus plants and is the main site for synthesis and accumulation of medicinal ingredients. The secretory cavity is formed in lysogenesis, when epithelial cells enter a process of programmed cell death. Pectinases are known to be involved in degradation of the cell wall during the cytolysis of secretory cavity cells, but the changes in cell structure, the dynamic characteristics of cell wall polysaccharides and the related genes regulating cell wall degradation are unclear. In this study, electron microscopy and cell wall polysaccharide-labeling techniques were used to study the main characteristics of cell wall degradation of the secreting cavity of Citrus grandis ‘Tomentosa’ fruits. At the same time, the full CDS length of the pectinase gene CgPG21 was cloned, encoding a protein composed of 480 amino acids. CgPG21 is mainly located in the cell wall, participates in the degradation of the intercellular layer of the cell wall during the development of the secretory cavity, and plays an important role in the formation of the secretory cavity in the intercellular space-forming and lumen-expanding stages. With the development of secretory cavity, the cell wall polysaccharides of epithelial cells gradually degrade. CgPG21 is mainly involved in the intercellular layer degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  • Amelunxen F, Arbeiter H (1967) Untersuchungen an den Spritzdrusen von Dictamnus albus L. Zeitschrift Pflanzenphysiologie 58:49–69

    Google Scholar 

  • Atmodjo MA, Hao Z, Mohnen D (2013) Evolving views of pectin biosynthesis. Annu Rev of Plant Biol 64(1):747–779

    Article  CAS  Google Scholar 

  • Babu Y, Bayer M (2014) Plant polygalacturonases involved in cell elongation and separation-the same but different? Plants 3(4):613–623

    Article  PubMed  PubMed Central  Google Scholar 

  • Bacic A, Stone BA (1981) Isolation and ultrastructure of aleurone cell walls from wheat and barley. Aust J Plant Physiol 8:453–474

    Google Scholar 

  • Bai M, Liang M, Huai B, Gao H, Tong P, Shen R, He H, Wu H (2020) Ca2+-dependent nuclease is involved in DNA degradation during the programmed cell death of secretory cavity formation in Citrus grandis ‘Tomentosa’ fruits. J Exp Bot 71(16):4812–4827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benarie R, Kislev N, Frenkel C (1979) Ultrastructural changes in the cell walls of ripening apple and pear fruit. Plant Physiol 64(2):197–202

    Article  CAS  PubMed  Google Scholar 

  • Bennici A, Tani C (2004) Anatomical and ultrastructural study of the secretory cavity development of Citrus sinensis and Citrus limon: evaluation of schizolysigenous ontogeny. Flora 199(6):464–475

    Article  Google Scholar 

  • Bortiri E, Chuck G, Vollbrecht E, Rocheford T, Martienssen R, Hake S (2006) ramosa2 encodes alateral organ boundary domain protein that determines the fate of stem cells in branch meristems of maize. Plant Cell 18:574–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosabalidis A, Tsekos I (1982a) Ultrastructural studies on the secretory cavities of Citrus deliciosa ten. I. Early stages of the gland cells differentiation. Protoplasma 112:55–62

    Article  Google Scholar 

  • Bosabalidis A, Tsekos I (1982b) Ultrastructural studies on the secretory cavities of Citrus deliciosa ten. II. Early stages of the gland cells differentiation. Protoplasma 112:63–70

    Article  Google Scholar 

  • Brocheriou J, Belin-Depoux M (1974) Contribution a I etude ontogenique des poches des feuilles de quelques Myrtaceae. Phytumurphology 24:321–338

    Google Scholar 

  • Buat R (1989) Ontogeny, cell differentiation and structure of vascular plants. Springer-Verlag, Berlin

    Google Scholar 

  • Chen Y, Wu H (2010) Programmed cell death involved in the schizolysigenous formation of the secretory cavity in Citrus sinensis (L) Osbeck. Chin Sci Bull 55(20):2160–2168

    Article  CAS  Google Scholar 

  • Cheng C, Zhang L, Yang X, Yang X, Zhong G (2015) Profiling gene expression in citrus fruit calyx abscission zone (AZ-C) treated with ethylene. Mol Genet Genomics 290(5):1991–2006

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2018) Diffuse growth of plant cell walls. Plant Physiol 176(1):16–27

    Article  CAS  PubMed  Google Scholar 

  • Daher FB, Braybrook SA (2015) How to let go: pectin and plant cell adhesion. Front in Plant Sci 6:523

    Article  Google Scholar 

  • Domozych DS, Sorensen I, Popper ZA, Ochs J, Andreas A, Fangel JU, Pielach A, Sacks C, Brechka H, Ruisi-Besares P, Willats W, Rose J (2014) Pectin metabolism and assembly in the cell wall of the charophyte green alga penium margaritaceum. Plant Physiol 165(1):105–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabi JP, Broetto SG, da Silva SL, Zhong S, Lajolo FM (2014) Nascimento J (2014) Analysis of papaya cell wall-related genes during fruit ripening indicates a central role of polygalacturonases during pulp softening. PLoS ONE 9:e105685

    Article  PubMed  PubMed Central  Google Scholar 

  • Fohn M (1935) Zurentstehunq und weiterbildlung der exkreträume von Citrus medica L. und Eucalyptus globulus Lab. Österreichische Botanische Zeitschrift 84(3):198–209

  • Gapper NE, McQuinn RP, Giovannoni JJ (2013) Molecularandgenetic regulation of fruit ripening. Plant Mol Biol 82:575–591

    Article  CAS  PubMed  Google Scholar 

  • Garg G, Singh A, Kaur A, Mahajan R (2016) Microbial pectinases: an ecofriendly tool of nature for Industries. Biotechnol 6:47

    CAS  Google Scholar 

  • Gunawardena A, Pearce D, Jackson MB, Hawes CR, Evans DE (2001) Rapid changes in cell wall pectic polysaccharides are closely associated with early stages of aerenchyma formation, a spatially localized form of programmed cell death in roots of maize promoted by ethylene. Plant Cell Environ 24:1369–1375

    Article  CAS  Google Scholar 

  • Gunawardena A, Greenwood JS, Dengler NG (2007) Cell wall degradation and modification during programmed cell death in lace plant, Aponogeton madagascariensis (Aponogetonaceae). Am J Bot 94:1116–1128

    Article  CAS  PubMed  Google Scholar 

  • Haberlandt G (1914) Physioloqical plant anotomy. London: Macmillan Press 777

  • He H, Bai M, Tong P, Yang M, Wu H (2018) Cellulase6 and mannanase7 affect cell differentiation and silique dehiscence. Plant Physiol 176(3):2186–2201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernrich G (1970) Elektronenmikroskopische beobachtungen an den drüsenzellen von Poncirus trifoliata; zugleich ein beitrag zur wirkung ätherischeröle auf pflanzenzellen und eine method zur unterscheidung flüchtiger von nichtflüchtigen lipophilen komponenten. Protoplasma 69(1):15–36

    Article  Google Scholar 

  • Huai B, Bai M, Tong P, He H, Liang M, Chen G, Wu H (2021) CgPBA1 may be involved in nuclear degradation during secretory cavity formation by programmed cell death in Citrus grandis ‘Tomentosa’ fruits. Plant Physiol Bioch 160:306–314

    Article  CAS  Google Scholar 

  • Kim J, Shiu S, Thoma S, Li WH, Patterson S (2006) Patterns of expansion and expression divergence in the plant polygalacturonase gene family. Genome Biol 7(9):1–14

    Article  Google Scholar 

  • Kisse JG (1958) Die Ausscheidung von atherischen glen und harzen. Handbuch Der Pflanzenphysiologie 10:91–131

    Google Scholar 

  • Knight TG, Klieber A, Sedgley M (2001) The relationship between oil gland and fruit development in Washington navel orange (Citrus sinensis L Osbeck). Ann Bot-London. 88(6):1039–1047

    Article  Google Scholar 

  • Knight TG, Klieber A, Sedgley M (2002) Structural basis of the rind disorder oleocellosis in Washington navel orange (Citrus sinensis L Osbeck). Ann Bot-London. 90(6):765–773

    Article  CAS  Google Scholar 

  • Li C, Zhao M, Ma X, Wen Z, Ying P, Peng M, Ning X, Xia R, Wu H, Li J (2019) The HD-Zip transcription factor LcHB2 regulates litchi fruit abscission through the activation of two cellulase genes. J Exp Bot 70(19):5189–5203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang S, Wu H, Lun X, Lu D (2006) Secretory cavity development and its relationship with the accumulation of essential oil in fruits of Citrus medica L var sarcodactylis (Noot) Swingle. J Integr Plant Biol 48(5):573–583

    Article  CAS  Google Scholar 

  • Liang S, Wang H, Yang M, Wu H (2009) Sequential actions of pectinases and cellulases during secretory cavity formation in Citrus fruits. Trees 23(1):19–27

    Article  CAS  Google Scholar 

  • Liang M, Bai M, Wu H (2021) Zn2+-Dependent Nuclease IsInvolved in Nuclear Degradationduring the Programmed Cell Death ofSecretory Cavity Formation in Citrus grandis ‘Tomentosa’ Fruits. Cells 10:3222. https://doi.org/10.3390/cells10113222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Y, Lin Y, Lin H, Lin M, Li H, Yuan F, Chen Y, Xiao J (2018) Effects of paper containing 1-MCP postharvest treatment on the disassembly of cell wall polysaccharides and softening in Younai plum fruit during storage. Food Chem 264:1–4

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Liang S, Yao N, Wu H (2012) Programmed cell death of secretory cavity cells in fruits of Citrus grandis cv Tomentosa is associated with activation of caspase 3-like protease. Trees 26(6):1821–1835

    Article  CAS  Google Scholar 

  • Martinet J (1872) Organes de secretion des vegetaux. Annales Des Sci Nat Botan 14(5):91–232

    Google Scholar 

  • Merelo P, Agusti J, Arbona V, Costa M, Estornell L, Gómez-Cadenas A, Coimbra S, Gómez M, Pérez-Amador M, Domingo C, Talón M, Tadeo F (2017) Cell wall remodeling in abscission zone cells during ethylene-promoted fruit abscission in Citrus. Front Plant Sci 8:126

    PubMed  PubMed Central  Google Scholar 

  • Micheli F (2001) Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends in Plant Sci 6(9):414–419

    Article  CAS  Google Scholar 

  • Obara K, Fukuda H (2004) Programmed cell death in xylem differentiation. Programmed cell death in plants, Oxford, Blackwell

    Google Scholar 

  • Peng Z, Liu G, Li H, Wang Y, Gao H, Jemrić T, Fu D (2022) Molecular and genetic events determining the softening of fleshy fruits: a comprehensive review. Int J Mol Sci 23(20):12482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ram SS, Reeta RS, Ashok P, Christian L (2019) Advances in Enzyme Technology, Microbial Enzymes—An Overview. Elsevier, London, pp 1–40

    Google Scholar 

  • Ren Y, Sun P, Wang X, Zhu Z (2020) Degradation of cell wall polysaccharides and change of related enzyme activities with fruit softening in Annona squamosa during storage. Postharvest Biol Tec 166:111203

    Article  CAS  Google Scholar 

  • Sieck W (1895) Die Schizolysigenen Secretbehalter. Jahrb Wiss Botanik 27:197–242

    Google Scholar 

  • Sprecher E (1956) BeitrRge zur frage der biogenese sekundirer pflanzenstoffe der weinraute (Ruta graveolens L). Planta 47(4):323–358

    Article  Google Scholar 

  • Tariq A, Latif Z (2012) Isolation and biochemical characterization of bacterial isolates producing different levels of polygalacturonases from various sources. Afr J Microbiol Res 6(45):7259–7264

    CAS  Google Scholar 

  • Thomson WW, Platt-Aloia KA, Endress AG (1967) Ultrastructure of oil gland development in the leaf of Citrus sinensis L. Bot Gaz 137:330–340

    Article  Google Scholar 

  • Tong P, Huai B, Chen Y, Bai M, Wu H (2020) CisPG21 and CisCEL16 are involved in the regulation of the degradation of cell walls during secretory cavity cell programmed cell death in the fruits of Citrus sinensis (L) Osbeck. Plant Sci 297:110540

    Article  CAS  PubMed  Google Scholar 

  • Tschirch A, Stock E (1933) Die harze und die harzbehälter. Gebrüder Borntraeger, Beilin

    Google Scholar 

  • Turner GW, Berry AM, Gifford EM (1998) Schizogenous secretory cavities of Citrus limon (L.) Burm. F. and a reevaluation of the lysigenous gland concept. Int J Plant Sci 159:75–88

    Article  Google Scholar 

  • Van Tieqhem P (1885) Deuxieme memoire sur les canaux secreteurs. Annales Des Sci Nat Botanique. 22:1–96

    Google Scholar 

  • Wolf SI, Mouille G, Pelloux J (2009) Homogalacturonan methyl-esterification and plant development. Mol Plant 2(5):851–860

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Li H, Yang Y, Zhan Y, Tu D (2013) Variation in the components and antioxidant activity of Citrus medica L. var. sarcodactylis essential oils at different stages of maturity. Ind Crop Prod 46:311–316

    Article  CAS  Google Scholar 

  • Zamil MS, Geitmann A (2017) The middle lamella-more than a glu. Physical Biol 14(1):015004

    Article  CAS  Google Scholar 

  • Zhang B, Gao Y, Zhang L, Zhou Y (2021) The plant cell wall: Biosynthesis, construction, and functions. J Integr Plant Biol 63(1):251–272

    Article  PubMed  Google Scholar 

  • Zheng P, Bai M, Chen Y, Liu P, Gao L, Liang S, Wu H (2014) Programmed cell death of secretory cavity cells of citrus fruits is associated with Ca2+ accumulation in the nucleus. Trees 28(4):1137–1144

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (project no. 32270381 to MB, 31870172 to HW), Natural Science Foundation of Guangdong (project no. 2022A1515011086 to MB), the Open Competition Program of Ten Major Directions of Agricultural Science and Technology Innovation for the 14th Five-Year Plan of Guangdong Province (project no. 2022SDZG07 to HW), Laboratory of Lingnan Modern Agriculture Project (project no. NZ 2021024 to HW), Key Realm R&D Program of Guangdong Province (project no. 2020B020221001 to HW), Agricultural Science and Technology Innovation and Promotion Project of Guangdong (project no. 2018LM2160 to HW), and Research Fund of Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture (No. 2022KF009).

Funding

This work was supported by the National Natural Science Foundation of China (project no. 32270381 to MB), Natural Science Foundation of Guangdong (project no. 2022A1515011086 to MB), National Natural Science Foundation of China (project no. 31870172 to HW), the Open Competition Program of Ten Major Directions of Agricultural Science and Technology Innovation for the 14th Five-Year Plan of Guangdong Province, (project no. 2022SDZG07 to HW), Laboratory of Lingnan Modern Agriculture Project (project no. NZ 2021024 to HW), Key Realm R&D Program of Guangdong Province (project no. 2020B020221001 to HW), Agricultural Science and Technology Innovation and Promotion Project of Guangdong (project no. 2018LM2160 to HW), Research Fund of Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture (No. 2022KF009 to MB).

Author information

Authors and Affiliations

Authors

Contributions

HW and MB conceived the project. HW and MB designed the experiments. PT, NS, HH and BH performed the experiments and the data analysis. MB and HW wrote the manuscript, QL revised the manuscript.

Corresponding authors

Correspondence to Mei Bai or Hong Wu.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work; there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Additional information

Communicated by Leandro Peña.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 95 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, M., Tong, P., Luo, Q. et al. CgPG21 is involved in the degradation of the cell wall during the secretory cavity formation in Citrus grandis ‘Tomentosa’ fruits. Plant Cell Rep 42, 1311–1331 (2023). https://doi.org/10.1007/s00299-023-03032-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-023-03032-7

Keywords

Navigation