Skip to main content
Log in

Membrane-related hallmarks of kinetin-induced PCD of root cortex cells

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Changes in cellular membrane potential and their fluidisation are the hallmarks of cell death induction with kinetin in root cortex.

Abstract

Programmed cell death (PCD), one of the essential processes in plant development, is still poorly understood. In this paper, the scientific plant model, V. faba ssp. minor seedling roots after kinetin application which triggers off programmed death of cortex cells, was used to recognise membrane-related aspects of plant cell death. Spectrophotometric, reflectometric and microscopic studies showed that the PCD induced by kinetin is accompanied by higher potassium ions leakage from roots, loss of plasma and ER membrane potentials (expressed by their lower amounts and higher index of fatty acid unsaturation), malformation of nuclear envelope, lower total lipid amount and formation of their peroxides, lower amount of phospholipids and changes in their composition. The results showed that potassium ions leakage, expressed in percentage of their amounts, and loss of plasma and ER membrane potential, expressed in percentage of their fluorescence intensity, together with the nuclear chromatin double staining with ethidium bromide and acridine orange, might be direct and universal methods for detecting specific plant PCD hallmarks and estimation of PCD intensity (percentage of dying and dead cells).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AO:

Acridine orange

Eb:

Evans blue

EB:

Ethidium bromide

CMA3 :

Chromomycin A3

CNGCs:

Cyclic nucleotide gated channels

DAPI:

4′,6-Diamidino-2-phenylindole

ER:

Endoplasmic reticulum

FAMEs:

Fatty acid methyl esters

HK4:

Histidine kinases receptor

MDA:

Malondialdehydehyde

PA:

Phosphatidic acid

PC:

Phosphatidylcholine

PCD:

Programmed cell death

PE:

Phosphatidylethanoloamine

PI:

Phosphatidylinositol

PG:

Phosphatidylglycerol

TBA:

2-Thiobarbituric acid

PS:

Phosphatidylserine

References

  • Bernat P, Długoński J (2007) Tributyltin chloride interactions with fatty acids composition and degradation ability of the filamentous fungus Cunninghamella elegans. Int Biodeterior Biodegrad 60:133–136

    Article  CAS  Google Scholar 

  • Bernat P, Gajewska E, Szewczyk R, Słaba M, Długoński J (2014a) Tributyltin (TBT) induces oxidative stress and modifies lipid profile in the filamentous fungus Cunninghamella elegans. Environ Sci Pollut Res Int 21:4228–4235

    Article  CAS  PubMed  Google Scholar 

  • Bernat P, Gajewska E, Bernat T, Wielanek M (2014b) Characterisation of the wheat phospholipid fraction in the presence of nickel and/or selenium. Plant Growth Regul 72:163–170

    Article  CAS  Google Scholar 

  • Biswas MS, Mano J (2015) Lipid Peroxide-derived short-chain carbonyls mediate hydrogen peroxide-induced and salt-Induced programmed cell death in plants. Plant Physiol 168:885–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byczkowska A, Kunikowska A, Kaźmierczak A (2013) Determination of ACC-induced cell programmed death in roots of Vicia faba ssp. minor seedlings by acridine orange and ethidium bromide staining. Protoplasma 250:121–128

    Article  CAS  PubMed  Google Scholar 

  • Caesar K, Thamm AMK, Witthöft J, Elgass K, Huppenberger P, Grefen C, Horak J, Harter K (2011) Evidence for the localization of the Arabidopsis cytokinin receptors AHK3 and AHK4 in the endoplasmic reticulum. J Exp Bot 62:5571–5580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JJ, Yu BP (1994) Alterations in mitochondrial membrane fluidity by lipid peroxidation products. Free Radic Biol Med 17:411–418

    Article  CAS  PubMed  Google Scholar 

  • Conradt B, Xue D (2005) Programmed cell death. In: Wormbook (ed. The C. elegans Research Community, Wormbook). doi:10.1895/wormbook.1.32.1

  • Domínguez F, Cejudo FJ (2012) A comparison between nuclear dismantling during plant and animal programmed cell death. Plant Sci 197:114–121

    Article  PubMed  Google Scholar 

  • Doniak M, Barciszewska MZ, Kaźmierczak J, Kaźmierczak A (2014) The crucial elements of the ‘last step’ of programmed cell death induced by kinetin in root cortex of V. faba ssp. minor seedlings. Plant Cell Rep 33:2063–2067

    Article  CAS  PubMed  Google Scholar 

  • Doniak M, Kaźmierczak A, Byczkowska A, Glińska S (2016) Reactive oxygen species and sugars may be the messengers in kinetin-induced death of root cortex cells of V. faba ssp. minor seedlings. Biol Plant. doi:10.1007/s10535-016-0654-y

  • Feske S (2010) CRAC channelopathies. Eur. J Physiol 460:417–435

    CAS  Google Scholar 

  • Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  • Freimoser FM, Jakob CA, Aebi M, Tuor U (1999) The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay is a fast and reliable method for colorimetric determination of fungal cell densities. Appl Environ Microbiol 65:3727–3729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny et al (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19:107–120

    Article  CAS  PubMed  Google Scholar 

  • Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM et al (2015) Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 22:58–73

    Article  CAS  PubMed  Google Scholar 

  • Hara-Nishimura I, Hatsugai N (2011) The role of vacuole in plant cell death. Cell Death Differ 18:1298–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Huang CN, Cornejo MJ, Bush DS, Jones RL (1986) Estimating viability of plant protoplasts using double and single staining. Protoplasma 135:80–87

    Article  Google Scholar 

  • Jammes F, Hu HC, Villiers F, Bouten R, Kwak JM (2011) Calcium-permeable channels in plant cells. FEBS J 278:4262–4276

    Article  CAS  PubMed  Google Scholar 

  • Kacprzyk J, Daly CT, McCabe PF (2011) The botanical dance of death: programmed cell death in plants. Adv Bot Res 60:169–271

    Article  CAS  Google Scholar 

  • Kawai-Yamada M, Ohori Y, Uchimiya H (2004) Dissection of Arabidopsis Bax inhibitor-1 suppressing Bax-, hydrogen peroxide-, and salicylic acid-induced cell death. Plant Cell 16:21–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaźmierczak A (2010) Endoreplication in Anemia phyllitidis coincides with the development of gametophytes and male sex. Physiol Plant 138:321–328

    Article  PubMed  Google Scholar 

  • Kunikowska A, Byczkowska A, Kaźmierczak A (2013) Kinetin induces cell death in root cortex cells of Vicia faba ssp. minor seedlings. Protoplasma 250:851–861

    Article  CAS  PubMed  Google Scholar 

  • Landes T, Jean-Claude Martinou JC (2011) Mitochondrial outer membrane permeabilization during apoptosis: the role of mitochondrial fission. Biochim Biophys Acta 1813:540–545

    Article  CAS  PubMed  Google Scholar 

  • Mansour MMF, Al-Mutawa MM, Salama KHA, Abou Hadid AMF (2002) Effect of NaCl and polyamines on plasma membrane lipid of wheat roots. Biol Plant 45:235–239

    Article  CAS  Google Scholar 

  • Matsushita T, Inoue I, Tanaka R (2010) An assay method for determining the total lipid content of fish meat using a 2-thiobarbituric acid reaction. J Am Oil Chem Soc 7:963–972

    Article  Google Scholar 

  • Minina EA, Filonova LH, Fukada K, Eugene I, Savenkov EI, Gogvadze V, Clapham D, Sanchez-Vera V, Suarez MF, Zhivotovsky B, Daniel G, Smertenko A, Bozhkov PV (2013) Autophagy and metacaspase determine the mode of cell death in plants. J Cell Biol 203:917–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naha N, Lee HY, Jo MJ, Chung BCh, Kim SH, Kim MO (2008) Rare sugar D-allose induces programmed cell death in hormone refractory prostate cancer cells. Apoptosis 13:1121–1134

    Article  CAS  PubMed  Google Scholar 

  • Omoto E, Iwasaki Y, Miyake H, Taniguchi M (2016) Salinity induces membrane structure and lipid changes in maize mesophyll and bundle sheath chloroplasts. Physiol Plant 157:13–23

    Article  CAS  PubMed  Google Scholar 

  • Quartacci MF, Cosi E, Navari-Izzo F (2001) Lipids and NADPH-dependent superoxide production in plasma membrane vesicles from roots of wheat grown under copper deficiency or excess. J Exp Bot 52:77–84

    Article  CAS  PubMed  Google Scholar 

  • Reape TJ, McCabe PF (2010) Apoptotic-like regulation of programmed cell death in plants. Apoptosis 15:249–256

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Pons N, Vicient CM (2013) Identification of a type I Ca2+/Mg2+-dependent endonuclease induced in maize cells exposed to camptothecin. BMC Plant Biol 13:186

    Article  PubMed  PubMed Central  Google Scholar 

  • Sutoh K, Sanuki N, Sakaki T, Imai R (2010) Specific induction of TaAAPT1, an ER- and Golgi-localized ECPT-type aminoalcoholphosphotransferase, results in preferential accumulation of the phosphatidylethanolamine membrane phospholipid during cold acclimation in wheat. Plant Mol Biol 72:519–531

    Article  CAS  PubMed  Google Scholar 

  • Van Doorn WG (2011) Classes of programmed cell death in plants, compared to those in animals. J Exp Bot 14:4749–4761

    Article  Google Scholar 

  • van Doorn WG, Woltering EJ (2005) Many ways to exit? Cell death categories in plants. Trends Plant Sci 10:117–122

    Article  PubMed  Google Scholar 

  • Van Doorn WG, Beers EP, Dangl JL, Franklin-Tong VE, Gallois P, Hara-Nishimura I, Jones AM, Kawai-Yamada M, Lam E, Mundy J, Mur LAJ, Petersen M, Smertenko A, Taliansky M, Van Breusegem F, Wolpert T, Woltering E, Zhivotovsky B, Bozhkov PV (2011) Morphological classification of plant cell deaths. Cell Death Differ 18:1241–1246

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshinaga K, Arimura S, Hirata A, Niwa Y, Yun DJ, Tsutsumi N, Uchimiya H, Kawai-Yamada M (2005) Mammalian Bax initiates plant cell death through organelle destruction. Plant Cell Rep 24:408–417

    Article  CAS  PubMed  Google Scholar 

  • Zhou XR, Callahan DL, Shrestha P, Liu SQ, Petrie JR, Singh SP (2014) Lipidomic analysis of Arabidopsis seed genetically engineered to contain DHA. Front Plant Sci 5:1–19

    Google Scholar 

Download references

Acknowledgements

We thank Ms. M. Fronczak for her help in preparing this manuscript in English and A. Byczkowska for her help in plasma and ER membrane staining. This work was partially supported by grant from the University of Łódź, No. 506/1141 and No. B1551000000988.02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Kaźmierczak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by A. Dhingra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaźmierczak, A., Doniak, M. & Bernat, P. Membrane-related hallmarks of kinetin-induced PCD of root cortex cells. Plant Cell Rep 36, 343–353 (2017). https://doi.org/10.1007/s00299-016-2085-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-016-2085-9

Keywords

Navigation