Skip to main content
Log in

Current progress towards the metabolic engineering of plant seed oil for hydroxy fatty acids production

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Hydroxy fatty acids produced in plant seed oil are important industrial material. This review focuses on the use of metabolic engineering approaches for the production of hydroxy fatty acids in transgenic plants.

Abstract

Vegetable oil is not only edible but can also be used for industrial purposes. The industrial demand for vegetable oil will increase with the continued depletion of fossil fuels and ensuing environmental issues such as climate change, caused by increased carbon dioxide in the air. Some plants accumulate high levels of unusual fatty acids in their seeds, and these fatty acids (FAs) have properties that make them suitable for industrial applications. Hydroxy fatty acids (HFAs) are some of the most important of these industrial FAs. Castor oil is the conventional source of HFA. However, due to the presence of toxin ricin in its seeds, castor is not cultivated on a large scale. Lesquerella is another HFA accumulator and is currently being developed as a new crop for a safe source of HFAs. The mechanisms of HFA synthesis and accumulation have been extensively studied using castor genes and the model plant Arabidopsis. HFAs accumulated to 17 % in the seed oil of Arabidopsis expressing a FA hydroxylase gene from castor (RcFAH12), but its seed oil content and plant growth decreased. When RcFAH12 gene was coexpressed with additional castor gene(s) in Arabidopsis, ~30 % HFAs were accumulated and the seed oil content and plant growth was almost restored to the wild-type level. Further advancement of our understanding of pathways, genes and regulatory mechanisms underlying synthesis and accumulation of HFAs is essential to developing and implementing effective genetic approaches for enhancing HFA production in oilseeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Amri IN (2011) The Lauric (Coconut and Palm Kernel) Oils. In: Gunstone FD (ed) Vegetable oils in food technology: composition, properties and uses, 2nd edn. Wiley-Blackwell, Oxford, pp 169–198

    Google Scholar 

  • Andre C, Haslam RP, Shanklin J (2012) Feedback regulation of plastidic acetyl-CoA carboxylase by 18:1-acyl carrier protein in Brassica napus. Proc Natl Acad Sci USA 109:10107–10112

    PubMed Central  CAS  PubMed  Google Scholar 

  • Armougom R, Grondin I, Smadja J (1998) Fatty acid composition of lipid extracts of some tropical cucurbit seeds. Ocl Ol Corps Gras Lipids 5:323–328

    CAS  Google Scholar 

  • Arroyo-Caro JM, Chileh T, Alonso DL, García-Maroto F (2013a) Molecular characterization of a lysophosphatidylcholine acyltransferase gene belonging to the MBOAT family in Ricinus communis L. Lipids 48:663–674

    CAS  PubMed  Google Scholar 

  • Arroyo-Caro JM, Chileh T, Kazachkov M, Zou J, Alonso DL, García-Maroto F (2013b) The multigene family of lysophosphatidate acyltransferase (LPAT)-related enzymes in Ricinus communis. Cloning and molecular characterization of two LPAT genes that are expressed in castor seeds. Plant Sci 199–200:29–40

    PubMed  Google Scholar 

  • Badami RC, Patil KB (1980) Structure and occurrence of unusual fatty acids in minor seed oils. Prog Lipid Res 19:119–153

    CAS  PubMed  Google Scholar 

  • Bafor M, Smith MA, Jonsson L, Stobart K, Stymne S (1991) Ricinoleic acid biosynthesis and triacylglycerol assembly in microsomal preparations from developing castor-bean (Ricinus communis) endosperm. Biochem J 280:507–514

    PubMed Central  CAS  PubMed  Google Scholar 

  • Banas A, Johansson I, Stymne S (1992) Plant microsomal phospholipases exhibit preference for phosphatidylcholine with oxygenated acyl groups. Plant Sci 84:137–144

    CAS  Google Scholar 

  • Banas A, Dahlqvist A, Ståhl U, Lenman M, Stymne S (2000) The involvement of phospholipid: diacylglycerol acyltransferases in triacylglycerol production. Biochem Soc Trans 28:703–705

    CAS  PubMed  Google Scholar 

  • Bao XM, Katz S, Pollard M, Ohlrogge J (2002) Carbocyclic fatty acids in plants: biochemical and molecular genetic characterization of cyclopropane fatty acid synthesis of Sterculia foetida. Proc Natl Acad Sci USA 99:7172–7177

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bates PD, Browse J (2011) The pathway of triacylglycerol synthesis through phosphatidylcholine in Arabidopsis produces a bottleneck for the accumulation of unusual FAs in transgenic seeds. Plant J 68:387–399

    CAS  PubMed  Google Scholar 

  • Bates PD, Browse J (2012) The significance of different diacylgycerol synthesis pathways on plant oil composition and bioengineering. Front Plant Sci. 2(3):147. doi:10.3389/fpls.2012.00147

    Google Scholar 

  • Bates PD, Durrett TP, Ohlrogge JB, Pollard M (2009) Analysis of acyl fluxes through multiple pathways of triacylglycerol synthesis in developing soybean embryos. Plant Physiol 150:55–72

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bates PD, Fatihi A, Snapp AR, Carlsson AS, Browse J, Lu C (2012) Acyl editing and headgroup exchange are the major mechanisms that direct polyunsaturated fatty acid flux into triacylglycerols. Plant Physiol 160:1530–1539

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bates PD, Johnson SR, Cao X, Li J, Nam J-W, Jaworski JG, Ohlrogge JB, Browse J (2014) FA synthesis is inhibited by inefficient utilization of unusual FAs for glycerolipid assembly. Proc Natl Acad Sci USA 111:1204–1209

    PubMed Central  CAS  PubMed  Google Scholar 

  • Beisson F, Li Y, Bonaventure G, Pollard M, Ohlrogge JB (2007) The acyltransferase GPAT5 is required for the synthesis of suberin in seed coat and root of Arabidopsis. Plant Cell 19:351–368

    PubMed Central  CAS  PubMed  Google Scholar 

  • Broun P, Somerville C (1997) Accumulation of ricinoleic, lesquerolic, and densipolic acids in seeds of transgenic Arabidopsis plants that express a fatty acyl hydroxylase cDNA from castor bean. Plant Physiol 113:933–942

    PubMed Central  CAS  PubMed  Google Scholar 

  • Broun P, Boddupalli S, Somerville C (1998) A bifunctional oleate 12-hydroxylase: desaturase from Lesquerella fendleri. Plant J 13:201–210

    CAS  PubMed  Google Scholar 

  • Brown AP, Kroon JTM, Swarbreck D, Febrer M, Larson TR, Graham IA, Caccamo M, Slabas AR (2012) Tissue-specific whole transcriptome sequencing in castor, directed at understanding triacylglycerol lipid biosynthetic pathways. PLoS One 7:e30100

    PubMed Central  CAS  PubMed  Google Scholar 

  • Burgal J, Shockey J, Lu C, Dyer J, Larson T, Graham I, Browse J (2008) Metabolic engineering of hydroxy fatty acid production in plants: RcDGAT2 drives dramatic increases in ricinoleate levels in seed oil. Plant Biotechnol J 6:819–831

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cahoon EB, Kinney AJ (2004) Dimorphecolic acid is synthesized by the coordinate activities of two divergent Δ12-oleic acid desaturase. J Biol Chem 279:12495–12502

    CAS  PubMed  Google Scholar 

  • Cahoon EB, Carlson TJ, Ripp KG, Schweiger BJ, Cook GA, Hall SE, Kinney AJ (1999) Biosynthetic origin of conjugated double bonds: production of fatty acid components of high-value drying oils in transgenic soybean embryos. Proc Natl Acad Sci USA 96:12935–12940

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cahoon EB, Ripp KG, Hall SE, Kinney AJ (2001) Formation of conjugated Δ8, Δ10-double bonds by Δ12-oleic acid desaturase-related enzymes. J Biol Chem 276:2637–2643

    CAS  PubMed  Google Scholar 

  • Cahoon EB, Schnurr JA, Huffman EA, Minto RE (2003) Fungal responsive fatty acid acetylenases occur widely in evolutionarily distant plant families. Plant J 34:671–683

    CAS  PubMed  Google Scholar 

  • Cahoon EB, Dietrich CR, Meyer K, Damude HG, Dyer JM, Kinney AJ (2006) Conjugated fatty acids accumulate to high levels in phospholipids of metabolically engineered soybean and Arabidopsis seeds. Phytochemistry 67:1166–1176

    CAS  PubMed  Google Scholar 

  • Caupin HJ (1997) Products from castor oil: Past, present, and future. In: Gunstone FD, Padley FB (eds) Lipid technologies and applications. Marcel Dekker, New York, pp 787–795

    Google Scholar 

  • Chapman KD, Ohlrogge JB (2012) Compartmentation of triacylglycerol accumulation in plants. J Biol Chem 287:2288–2294

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen GQ (2011) Effective reduction of chimeric tissue in transgenics for the stable genetic transformation of Lesquerella fendleri. HortScience 46:86–90

    CAS  Google Scholar 

  • Chen G, Greer MS, Lager I, Lindberg Yilmaz J, Mietkiewska E, Carlsson AS, Stymne S, Weselake RJ (2012) Identification and characterization of an LCAT-like Arabidopsis thaliana gene encoding a novel phospholipase A. FEBS Lett 586:373–377

    CAS  PubMed  Google Scholar 

  • Chen G, Tian B, Greer MS, Caldo KM, Singer S, Mietkiewska E, Dyer J, Smith M, Qiu X, Stymne S, Weselake RJ (2014) Characterization of a LCAT-like phospholipase A from hydroxy-fatty acid producing Lesquerella fendleri. In: 21st international symposium on plant lipids. Guelph, Ontario, Canada, pp 24

  • Dahlqvist A, Ståhl U, Lenman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S (2000) Phospholipid: diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci USA 97:6487–6492

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dauk M, Lam P, Kunst L, Smith MA (2007) A FAD2 homologue from Lesquerella lindheimeri has predominantly fatty acid hydroxylase activity. Plant Sci 173:43–49

    CAS  Google Scholar 

  • Demirbas A (2009) Political, economic and environmental impacts of biofuels: a review. Appl Energy 86:S108–S117

    CAS  Google Scholar 

  • Dewey RE, Wilson RF, Novitzky WP, Goode JH (1994) The AAPT1 gene of soybean complements a cholinephosphotransferase-deficient mutant of yeast. Plant Cell 6:1495–1507

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dierig DA, Thompson AE, Nakayama FS (1993) Lesquerella commercialization efforts in the United States. Ind Crop Prod 1:289–293

    Google Scholar 

  • Dierig DA, Dahlquist GH, Tomasi PM (2006) Registration of WCL-LO3 high oil Lesquerella fendleri germplasm. Crop Sci 46:1832–1833

    Google Scholar 

  • Dierig DA, Wang G, McCloskey WB, Thorp KR, Isbell TA, Ray DT, Foster MA (2011) Lesquerella: new crop development and commercialization in the U.S. Ind Crop Prod 34:1381–1385

    Google Scholar 

  • Dyer JM, Chapital DC, Kuan JC, Mullen RT, Turner C, McKeon TA, Pepperman AB (2002) Molecular analysis of a bifunctional fatty acid conjugase/desaturase from tung. Implications for the evolution of plant fatty acid diversity. Plant Physiol 130:2027–2038

    PubMed Central  CAS  PubMed  Google Scholar 

  • Eccleston VS, Ohlrogge JB (1998) Expression of lauroyl-acyl carrier protein thioesterase in Brassica napus seeds induces pathways for both FA oxidation and biosynthesis and implies a set point for triacylglycerol accumulation. Plant Cell 10:613–621

    PubMed Central  CAS  PubMed  Google Scholar 

  • Engeseth N, Stymne S (1996) Desaturation of oxygenated fatty acids in Lesquerella and other oil seeds. Planta 198:238–245

    CAS  Google Scholar 

  • Enikeev AG, Mishutina UO (2005) Physiological effects of rapeseed transformation with the acb gene as affected by the genetic vector structure. Rus J Plant Physiol 52:668–671

    CAS  Google Scholar 

  • Fairley P (2011) Next generation biofuels. Nature 474:S2–S5

    CAS  PubMed  Google Scholar 

  • Frentzen M (1998) Acyltransferases from basic science to modified seed oils. Eur J Lipid Sci Technol 100:161–166

    CAS  Google Scholar 

  • Fulda M, Shockey J, Werber M, Wolter FP, Heinz E (2002) Two long-chain acyl-CoA synthetases from Arabidopsis thaliana involved in peroxisomal fatty acid beta-oxidation. Plant J 32:93–103

    CAS  PubMed  Google Scholar 

  • Galliard T, Stumpf PK (1966) Fat metabolism in higher plants. 30 Enzymatic synthesis of ricinoleic acid by a microsomal preparation from developing Ricinus communis seeds. J Biol Chem 241:5806–5812

    CAS  PubMed  Google Scholar 

  • Gidda SK, Shockey JM, Rothstein SJ, Dyer JM, Mullen RT (2009) Arabidopsis thaliana GPAT8 and GPAT9 are localized to the ER and possess distinct ER retrieval signals: functional divergence of the dilysine ER retrieval motif in plant cells. Plant Physiol Biochem 47:867–879

    CAS  PubMed  Google Scholar 

  • Gidda SK, Shockey JM, Falcone M, Kim PK, Rothstein SJ, Andrews DW, Dyer JM, Mullen RT (2011) Hydrophobic-domain-dependent protein–protein interactions mediate the localization of GPAT enzymes to ER subdomains. Traffic 12:452–472

    CAS  PubMed  Google Scholar 

  • Gunstone FD (2008) Disappearance. Lipid Technol 20:48

    Google Scholar 

  • Gunstone FD, Hamilton RJ (2001) Oleochemical manufacture and applications. Sheffield Academic Press, UK

    Google Scholar 

  • Guo Y, Mietkiewska L, Francis T, Katavic V, Brost JM, Giblin M, Barton DL, Taylor DC (2009) Increase in nervonic acid content in transformed yeast and transgenic plants by introduction of a Lunaria annua L. 3-ketoacyl-CoA synthase (KCS) gene. Plant Mol Biol 69:565–575

    CAS  PubMed  Google Scholar 

  • Hayes DG, Kleiman R (1996) A detailed triglyceride analysis of Lesquerella fendleri oil: column chromatographic fractionation followed by supercritical fluid chromatography. J Am Oil Chem Soc 73:267–269

    CAS  Google Scholar 

  • Hettiarachchi D, Liu Y, Fox J, Sunderland B (2010) Western Australian sandalwood seed oil: new opportunities. Lipid Technology 22:27–29

    CAS  Google Scholar 

  • Holic R, Yazawa H, Kumagai H, Uemura H (2012) Engineered high content of ricinoleic acid in fission yeast Schizosaccharomyces pombe. Appl Microbiol Biotechnol 95:179–187

    CAS  PubMed  Google Scholar 

  • Hu Z, Ren Z, Lu C (2012) The phosphatidylcholine diacylglycerol cholinephosphotransferase is required for efficient hydroxy fatty acid accumulation in transgenic Arabidopsis. Plant Physiol 158:1944–1954

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huang C-Y, Chung C-I, Lin Y-C, Hsing Y-IC, Huang AHC (2009) Oil bodies and oleosins in Physcomitrella possess characteristics representative of early trends in evolution. Plant Physiol 150:1192–1203

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ichihara K, Takahashi T, Fujii S (1988) Diacylglycerol acyltransferase in maturing safflower seeds: its influences on the fatty acid composition of triacylglycerol and on the rate of triacylglycerol synthesis. Biochim Biophys Acta 958:125–129

    CAS  PubMed  Google Scholar 

  • Isbell TA, Mund MS, Evangelista RL, Dierig DA (2008) Method for analysis of fatty acid distribution and oil content on a single Lesquerella fendleri seed. Ind Crop Prod 28:231–236

    CAS  Google Scholar 

  • Jako C, Kumar A, Wei Y, Zou J, Barton DL, Giblin EM, Covello PS, Taylor DC (2001) Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiol 126:861–874

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jenderek MM, Dierig DA, Isbell TA (2009) Fatty-acid profile of Lesquerella germplasm in the National Plant Germplasm System collection. Ind Crops Prod 29:154–164

    CAS  Google Scholar 

  • Kim HU, Li Y, Huang AH (2005) Ubiquitous and endoplasmic reticulum-located lysophosphatidyl acyltransferase, LPAT2, is essential for female but not male gametophyte development in Arabidopsis. Plant Cell 17:1073–1089

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim HU, Lee K-R, Go YS, Jung JH, Suh M-C, Kim JB (2011) Endoplasmic reticulum-located PDAT1-2 from castor bean enhances hydroxy fatty acid accumulation in transgenic plants. Plant Cell Physiol 52:983–993

    CAS  PubMed  Google Scholar 

  • Kleiman R (1990) Chemistry of new industrial oilseed crops. In: Janick J, Simon JE (eds) Advances in new crops. Timber Press, Portland, pp 196–203

    Google Scholar 

  • Kroon JT, Wei W, Simon WJ, Slabas AR (2006) Identification and functional expression of a type 2 acyl-CoA:diacylglcerol acyltransferase (DGAT2) in developing castor bean seeds which has high homology to the major triglyceride biosynthetic enzyme of fungi and animals. Phytochemistry 67:2541–2549

    CAS  PubMed  Google Scholar 

  • Kumar R, Wallis JG, Skidmore C, Browse J (2006) A mutation in Arabidopsis cytochrome b5 reductase identified by high-throughput screening differentially affects hydroxylation and desaturation. Plant J 48:920–932

    CAS  PubMed  Google Scholar 

  • Lager I, Yilmaz JL, Zhou XR, Jasieniecka K, Kazachkov M, Wang P, Zou J, Weselake R, Smith MA, Bayon S, Dyer JM, Shockey JM, Heinz E, Green A, Banas A, Stymne S (2013) Plant acyl-CoA:lysophosphatidylcholine acyltransferases (LPCATs) have different specificities in their forward and reverse reactions. J Biol Chem 288:36902–36914

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lands WE (1965) Lipid metabolism. Ann Rev Biochem 34:313–346

    CAS  PubMed  Google Scholar 

  • Lardizabal KD, Mai JT, Wagner NW, Wyrick A, Voelker T, Hawkins DJ (2001) DGAT2 is a new diacylglycerol acyltransferase gene family: purification, cloning, and expression in insect cell of two polypeptides from Mortierella ramanniana with diacylglycerol acyltransferase activity. J Biol Chem 276:38862–38869

    CAS  PubMed  Google Scholar 

  • Lee M, Lenman M, Banas A, Bafor M, Singh S, Schweizer M, Nilsson R, Liljenberg C, Dahlqvist A, Gummeson P, Sjödahl S, Green A, Stymne S (1998) Identification of non-heme diiron proteins that catalyze triple bond and epoxy group formation. Science 280:915–918

    CAS  PubMed  Google Scholar 

  • Li Y, Beisson F, Koo AJK, Molina I, Pollard M, Ohlrogge J (2007) Identification of acyltransferases required for cutin biosynthesis and production of cutin with suberin-like monomers. Proc Natl Acad Sci USA 104:18339–18344

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li R, Yu K, Wu Y, Tateno M, Hatanaka T, Hildebrand DF (2012) Vernonia DGATs can complement the disrupted oil and protein metabolism in epoxygenase-expressing soybean seeds. Metab Eng 14:29–38

    PubMed  Google Scholar 

  • Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, Debono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot R, Ohlrogge J (2013) Acyl-lipid metabolism. Arabidopsis Book 2013(11):e0161. doi:10.1199/tab.0161

    Google Scholar 

  • Lin JT, Turner C, Liao LP, McKeon TA (2003) Identification and quantification of the molecular species of acylglycerols in castor oil by HPLC using ELSD. J Liquid Chromatography & Related Technologies 26:773–780

    CAS  Google Scholar 

  • Lu C, Kang J (2008) Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium-mediated transformation. Plant Cell Rep 27:273–278

    CAS  PubMed  Google Scholar 

  • Lu C, Fulda M, Wallis J, Browse J (2006) A high-throughput screen for genes from castor that boost hydroxy fatty acid accumulation in seed oils of transgenic Arabidopsis. Plant J 45:847–856

    CAS  PubMed  Google Scholar 

  • Lu C, Xin Z, Ren Z, Miquel M, Browse J (2009) An enzyme regulating triacylglycerol composition is encoded by the ROD1 gene of Arabidopsis. Proc Natl Acad Sci USA 106:18837–18842

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lü S, Song T, Kosma DK, Parsons EP, Rowland O, Jenks MA (2009) Arabidopsis CER8 encodes LONG-CHAIN ACYL-COA SYNTHETASE 1 (LACS1) that has overlapping functions with LACS2 in plant wax and cutin synthesis. Plant J 59:553–564

    PubMed  Google Scholar 

  • Malathi B, Ramesh S, Venkateswara Rao K, Dashavantha Reddy V (2006) Agrobacterium-mediated genetic transformation and production of semilooper resistant transgenic castor (Ricinus communis L.). Euphytica 147:441–449

    CAS  Google Scholar 

  • Mantle PG, Nisbet LJ (1976) Differentiation of Claviceps purpurea in axenic culture. J Gen Microbiol 93:321–334

    CAS  PubMed  Google Scholar 

  • Meesapyodsuk D, Qiu X (2008) An oleate hydroxylase from the fungus Claviceps purpurea: cloning, functional analysis, and expression in Arabidopsis. Plant Physiol 147:1325–1333

    PubMed Central  CAS  PubMed  Google Scholar 

  • Metzger JO (2009) Fats and oils as renewable feedstock for chemistry. Eur J Lipid Sci Technol 111:865–876

    CAS  Google Scholar 

  • Millar AA, Smith MA, Kunst L (2000) All FAs are not equal: discrimination in plant membrane lipids. Trends Plant Sci 5:95–101

    CAS  PubMed  Google Scholar 

  • Moire L, Rezzonico E, Goepfert S, Poirier Y (2004) Impact of unusual fatty acid synthesis on futile cycling through beta-oxidation and on gene expression in transgenic plants. Plant Physio 134:432–442

    CAS  Google Scholar 

  • Moon H, Smith MA, Kunst L (2001) A condensing enzyme from the seeds of Lesquerella fendleri that specifically elongates hydroxyl fatty acids. Plant Physiol 127:1635–1643

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moreau RA, Stumpf PK (1981) Recent studies of the enzymic synthesis of ricinoleic acid by developing castor beans. Plant Physiol 67:672–676

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nishida I, Tasaka Y, Shiraishi H, Murata N (1993) The gene and the RNA for the precursor to the plastid-located glycerol-3-phosphate acyltransferase of Arabidopsis thaliana. Plant Mol Biol 21:267–277

    CAS  PubMed  Google Scholar 

  • Ohlrogge JB, Pollard MR, Stumpf PK (1978) Studies on biosynthesis of waxes by developing jojoba seed tissues. Lipids 13:203–210

    CAS  Google Scholar 

  • Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J (1994) Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell 6:147–158

    PubMed Central  CAS  PubMed  Google Scholar 

  • Princen LH, Rothfus JA (1984) Development of new crops for industrial raw materials. J Am Oil Chem Soc 61:281–289

    CAS  Google Scholar 

  • Ramadan MF, Morsel JT (2002) Oil composition of coriander (Coriandrum sativum L.) fruit-seeds. Eur Food Res Technol 215:204–209

    CAS  Google Scholar 

  • Reed DW, Taylor DC, Covello PS (1997) Metabolism of hydroxy fatty acids in developing seeds in the genera Lesquerella (Brassicaceae) and Linum (Linaceae). Plant Physiol 114:63–68

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rossak M, Smith M, Kunst L (2001) Expression of the FAE1 gene and FAE1 promoter activity in developing seeds of Arabidopsis thaliana. Plant Mol Biol 46:717–725

    CAS  PubMed  Google Scholar 

  • Sailaja M, Tarakeswari M, Sujatha M (2008) Stable genetic transformation of castor (Ricinus communis L.) via particle gun-mediated gene transfer using embryo axes from mature seeds. Plant Cell Rep 27:1509–1519

    CAS  PubMed  Google Scholar 

  • Schnurr JA, Shockey JM, de Boer G-J, Browse JA (2002) Fatty acid export from the chloroplast. Molecular characterization of a major plastidial acyl-coenzyme A synthetase from Arabidopsis. 129:1700–1709

  • Schnurr J, Shockey J, Browse J (2004) The Acyl-CoA synthetase encoded by LACS2 is essential for normal cuticle development in Arabidopsis. Plant Cell 16:629–642

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shanklin J, Cahoon EB (1998) Desaturation and related modifications of fatty acids. Annu Rev Plant Physiol Plant Mol Biol 49:611–641

    CAS  PubMed  Google Scholar 

  • Shintani DK, Ohlrogge JB (1995) Feedback inhibition of fatty-acid synthesis in tobacco suspension cells. Plant J 7:577–587

    CAS  Google Scholar 

  • Shockey JM, Fulda MS, Browse JA (2002) Arabidopsis contains nine long-chain acyl-coenzyme A synthetase genes that participate in fatty acid and glycerolipid metabolism. Plant Physiol 129:1710–1722

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shockey JM, Gidda SK, Chapital DC, Kuan JC, Dhanoa PK, Bland JM, Rothstein SJ, Mullen RT, Dyer JM (2006) Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum. Plant Cell 18:2294–2313

    PubMed Central  CAS  PubMed  Google Scholar 

  • Singh S, Thomaeus S, Lee M, Stymne S, Green A (2001) Transgenic expression of a delta 12-epoxygenase gene in Arabidopsis seeds inhibits accumulation of linoleic acid. Planta 212:872–879

    CAS  PubMed  Google Scholar 

  • Slack CR, Campbell LC, Browse JA, Roughan PG (1983) Some evidence for the reversibility of the cholinephosphotransferase catalysed reaction in developing linseed cotyledons in vivo. Biochim Biophys Acta 754:10–20

    CAS  Google Scholar 

  • Slack CR, Roughan PG, Browse JA, Gardiner SE (1985) Some properties of cholinephosphotransferase from developing safflower cotyledons. Biochim Biophys Acta 833:438–448

    CAS  Google Scholar 

  • Smith CR Jr (1971) Occurrence of unusual fatty acids in plants. Prog Chem Fats Other Lipids 11:137–177

    Google Scholar 

  • Smith CR Jr, Wilson TL, Melvin EH, Wolff IA (1960) Dimorphecolic Acid—a unique hydroxydienoid fatty acid. J Am Chem Soc 82:1417–1421

    CAS  Google Scholar 

  • Smith MA, Moon H, Chowrira G, Kunst L (2003) Heterologous expression of a fatty acid hydroxylase gene in developing seeds of Arabidopsis thaliana. Planta 217:507–516

    CAS  PubMed  Google Scholar 

  • Snapp AR, Kang J, Qi X, Lu C (2014) A fatty acid condensing enzyme from Physaria fendleri increases hydroxy fatty acid accumulation in transgenic oilseeds of Camelina sativa. Planta 240:599–610

    CAS  PubMed  Google Scholar 

  • Somerville CR, Browse J, Jaworski J, Ohlrogge J (2000) Lipids. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and Molecular Biology of Plants, Chap 10. (Rockville, MD: American Society of Plant Physioloists), pp 456–526

  • Sorda G, Banse M, Kemfert C (2010) An overview of biofuel policies across the world. Energy Policy 38:6977–6988

    Google Scholar 

  • Ståhl U, Banas A, Stymne S (1995) Plant microsomal phospholipid acyl hydrolases have selectivities for uncommon fatty-acids. Plant Physiol 107:953–962

    PubMed Central  PubMed  Google Scholar 

  • Stålberg K, Ståhl U, Stymne S, Ohlrogge J (2009) Characterization of two Arabidopsis thaliana acyltransferases with preference for lysophosphatidylethanolamine. BMC Plant Biol 9:60

    PubMed Central  PubMed  Google Scholar 

  • Stymne S, Stobart AK (1984) Evidence for the reversibility of the acyl-CoA: lysophosphatidylcholine acyltransferase in microsomal preparations from developing safflower (Carthamus tinctorius L.) cotyledons and rat liver. Biochem J 223:305–314

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sujatha M, Sailaja M (2005) Stable genetic transformation of castor (Ricinus communis L.) via Agrobacterium tumefaciens-mediated gene transfer using embryo axes from mature seeds. Plant Cell Rep 23:803–810

    CAS  PubMed  Google Scholar 

  • Sujatha M, Lakshminarayana M, Tarakeswari M, Singh PK, Tuli R (2009) Expression of the cry1EC gene in castor (Ricinus communis L.) confers field resistance to tobacco caterpillar (Spodoptera litura Fabr) and castor semilooper (Achoea janata L.). Plant Cell Rep 28:935–946

    CAS  PubMed  Google Scholar 

  • Troncoso-Ponce MA, Kilaru A, Cao X, Durrett TP, Fan J, Jensen JK, Thrower NA, Pauly M, Wilkerson C, Ohlrogge JB (2011) Comparative deep transcriptional profiling of four developing oilseeds. Plant J 68:1014–1027

    PubMed Central  CAS  PubMed  Google Scholar 

  • United States Department of Agriculture (2014) Oilseeds: world markets and trade. http://apps.fas.usda.gov/psdonline/circulars/oilseeds.pdf

  • van de Loo FJ, Broun P, Turner S, Somerville C (1995) An oleate 12-hydroxylase from Ricinus communis L. is a fatty acyl desaturase homolog. Proc Natl Acad Sci USA 92:6743–6747

    PubMed Central  PubMed  Google Scholar 

  • van Erp H, Bates PD, Burgal J, Shockey J, Browse J (2011) Castor phospholipid: diacylglycerol acyltransferase facilitates efficient metabolism of hydroxy fatty acids in transgenic Arabidopsis. Plant Physiol 15:683–693

    Google Scholar 

  • Wang L, Shen W, Kazachkov M, Chen G, Chen Q, Carlsson AS, Stymne S, Weselake RJ, Zou J (2012) Metabolic interactions between the Lands cycle and the Kennedy pathway of glycerolipid synthesis in Arabidopsis developing seeds. Plant Cell 24:4652–4669

    PubMed Central  CAS  PubMed  Google Scholar 

  • Weiss SB, Kennedy EP (1956) The enzymatic synthesis of triglycerides. J Am Chem Soc 78:3550

    CAS  Google Scholar 

  • Weiss SB, Kennedy EP, Kiyasu JY (1960) The enzymatic synthesis of triglycerides. J Biol Chem 235:40–44

    CAS  PubMed  Google Scholar 

  • Xiao S, Chye M-L (2009) An Arabidopsis family of six acyl-CoA-binding proteins has three cytosolic members. Plant Physio Biochem 47:479–484

    CAS  Google Scholar 

  • Xu J, Carlsson AS, Francis T, Zhang M, Hoffman T, Giblin ME, Taylor DC (2012) Triacylglycerol synthesis by PDAT1 in the absence of DGAT1 activity is dependent on re-acylation of LPC by LPCAT2. BMC Plant Biol 12:4

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yang W, Pollard M, Li-Beisson Y, Beisson F, Feig M, Ohlrogge J (2010) A distinct type of glycerol-3-phosphate acyltransferase with sn-2 preference and phosphatase activity producing 2-monoacylglycerol. Proc Natl Acad Sci USA 107:12040–12045

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yurchenko OP, Nykiforuk CL, Moloney MM, Ståhl U, Banaś A, Stymne S, Weselake RJ (2009) A 10-kDa acyl-CoA-binding protein (ACBP) from Brassica napus enhances acyl exchange between acyl-CoA and phosphatidylcholine. Plant Biotechnol J 7:602–610

    CAS  PubMed  Google Scholar 

  • Zhao L, Katavic V, Li F, Haughn GW, Kunst L (2010) Insertional mutant analysis reveals that long-chain acyl-CoA synthetase 1 (LACS1), but not LACS8, functionally overlaps with LACS9 in Arabidopsis seed oil biosynthesis. Plant J 64:1048–1058

    CAS  PubMed  Google Scholar 

  • Zheng Z, Xia Q, Dauk M, Shen W, Selvaraj G, Zou J (2003) Arabidopsis AtGPAT1, a member of the membrane-bound glycerol-3-phosphate acytransferase gene family, is essential for tapetum differentiation and male fertility. Plant Cell 15:1872–1887

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zheng P, Allen WB, Roesler K, Williams ME, Zhang S, Li J, Glassman K, Ranch J, Nubel D, Solawetz W, Bhattramakki D, Llaca V, Deschamps S, Zhong G-Y, Tarczynski MC, Shen B (2008) A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet 40:367–372

    CAS  PubMed  Google Scholar 

  • Zou J, Wei Y, Jako C, Kumar A, Selvaraj G, Taylor DC (1999) The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene. Plant J 19:645–653

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was conducted with the support of the Agricultural Research Project Program (project no. PJ010075) of the National Academy of Agricultural Science, the “Next-Generation BioGreen 21 Program” (SSAC, project no. PJ009484012014) of the Rural Development Administration, Republic of Korea, the US Department of Agriculture-Agricultural Research Service-Current Research Information System Project 2030-21410-020-00D, and the USDA Trust Fund Cooperative Agreement with RDA (Agreement number: 58 0212 9 036F). The authors wish to thank Dr. Colleen McMahan for critical reading of the manuscript. USDA is an equal opportunity provider and employer. Mention of a specific product name by the United States Department of Agriculture does not constitute an endorsement and does not imply a recommendation over other suitable products.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Uk Kim.

Additional information

Communicated by Neal Stewart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, KR., Chen, G.Q. & Kim, H.U. Current progress towards the metabolic engineering of plant seed oil for hydroxy fatty acids production. Plant Cell Rep 34, 603–615 (2015). https://doi.org/10.1007/s00299-015-1736-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-015-1736-6

Keywords

Navigation