Skip to main content
Log in

Isolation and functional characterization of a novel rice constitutive promoter

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

A novel rice constitutive promoter (P OsCon1 ) was isolated. The molecular mechanism of the promoter activity was investigated. P OsCon1 could be used as an alternative constitutive promoter for crop transgenic engineering.

Abstract

Monocot constitutive promoter is an important resource for crop transgenic engineering. In this report, we isolated a novel promoter, Oscon1 promoter (P OsCon1 ), from the 5′ upstream region of a constitutively expressed rice gene OsDHAR1. In P OsCon1 ::GUS transgenic rice, we showed that P OsCon1 had a broad expression spectrum in all tested tissues. The expression of the promoter was further analyzed in comparison with the previously characterized strong constitutive promoters. P OsCon1 exhibited comparable activity to OsCc1, OsAct1 or ZmUbi promoters in most tissues, and more active than 35S promoter in roots, seeds, and calli. Further quantitative assays indicated that P OsCon1 activity was not affected by developmental stages or by environmental factors. Further, 5′-deletions analysis indicated that the distinct regions might contribute to the strong expression of P OsCon1 in different tissues. Overall, our results suggest that P OsCon1 is a novel constitutive promoter, which could potentially use in transgenic crop development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

P OsCon1 :

Rice constitutive promoter 1

P OsAct1 :

Rice Actin1 promoter

P 35S :

Cauliflower mosaic virus 35S promoter

P ZmUbi :

Maize ubiquitin promoter

P OsCc1 :

Rice OsCc1 promoter

DHAR:

Dehydroascorbate reductase

GUS:

β-Glucuronidase

qRT-PCR:

Quantitative reverse transcription polymerase chain reaction

MS:

Murashige and Skoog

X-Gluc:

5-Bromo-4-chloro-3-indolyl-beta-glucuronide

4-MU:

4-Methylumbelliferone

DAG:

Days after germination

ASF1:

Activating sequence factor 1

ASF2:

Activating sequence factor 2

EEC:

Enhancer element consensus

CGF1:

Chlorophyll a/b-binding protein gene GATA-box factor 1

DHA:

Dehydroascorbate

cytDHAR:

Cytosolic DHAR

AsA:

Ascorbate acid

ROS:

Reactive oxygen species

SD:

Standard deviation

GAP:

Glyceraldydyde-3-phosphate dehydrogenase

CAB:

Chlorophyll A/B binding protein

RBCS:

Ribulose bisphosphate carboxylase

References

  • Argüello-Astorga G, Herrera-Estrella L (1998) Evolution of light-regulated plant promoters. Annu Rev Plant Biol 49(1):525–555

    Article  Google Scholar 

  • Benfey PN, Ren L, Chua N-H (1990) Tissue-specific expression from CaMV 35S enhancer subdomains in early stages of plant development. EMBO J 9(6):1677

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bhattacharyya J, Chowdhury AH, Ray S, Jha JK, Das S, Gayen S, Sen SK (2012) Native polyubiquitin promoter of rice provides increased constitutive expression in stable transgenic rice plants. Plant Cell Rep 31(2):271–279. doi:10.1007/s00299-011-1161-4

    Article  PubMed  CAS  Google Scholar 

  • Casal JJ, Yanovsky MJ (2005) Regulation of gene expression by light. Int J Dev Biol 49(5/6):501

    Article  PubMed  CAS  Google Scholar 

  • Chen Q-J, Xie M, Ma X-X, Dong L, Chen J, Wang X-C (2010) MISSA is a highly efficient in vivo DNA assembly method for plant multiple-gene transformation. Plant Physiol 153(1):41–51. doi:10.1104/pp.109.152249

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18(4):675–689. doi:10.1007/BF00020010

    Article  PubMed  CAS  Google Scholar 

  • Cornejo M-J, Luth D, Blankenship KM, Anderson OD, Blechl AE (1993) Activity of a maize ubiquitin promoter in transgenic rice. Plant Mol Biol 23(3):567–581

    Article  PubMed  CAS  Google Scholar 

  • Duan Y, Zhai C, Li H, Li J, Mei W, Gui H, Ni D, Song F, Li L, Zhang W, Yang J (2012) An efficient and high-throughput protocol for Agrobacterium-mediated transformation based on phosphomannose isomerase positive selection in Japonica rice (Oryza sativa L.). Plant Cell Reports 31(9):1611–1624. doi:10.1007/s00299-012-1275-3

    Article  PubMed  CAS  Google Scholar 

  • Gallie DR (2013a) L-Ascorbic acid: a multifunctional molecule supporting plant growth and development. Scientifica 2013:24. doi:10.1155/2013/795964

    Article  Google Scholar 

  • Gallie DR (2013b) The role of L-ascorbic acid recycling in responding to environmental stress and in promoting plant growth. J Exp Bot 64(2):433–443. doi:10.1093/jxb/ers330

    Article  PubMed  CAS  Google Scholar 

  • Holme IB, Wendt T, Holm PB (2013) Intragenesis and cisgenesis as alternatives to transgenic crop development. Plant Biotechnol J 11(4):395–407. doi:10.1111/pbi.12055

    Article  PubMed  CAS  Google Scholar 

  • Jang IC, Choi WB, Lee KH, Song SI, Nahm BH, Kim JK (2002) High-level and ubiquitous expression of the rice cytochrome c gene OsCc1 and its promoter activity in transgenic plants provides a useful promoter for transgenesis of monocots. Plant Physiol 129(4):1473–1481. doi:10.1104/pp.002261

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6(13):3901

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jeong M-J, Shih M-C (2003) Interaction of a GATA factor with cis-acting elements involved in light regulation of nuclear genes encoding chloroplast glyceraldehyde-3-phosphate dehydrogenase in Arabidopsis. Biochem Biophys Res Commun 300(2):555–562

    Article  PubMed  CAS  Google Scholar 

  • Karthikeyan A, Shilpha J, Karutha PS, Ramesh M (2012) Agrobacterium-mediated transformation of indica rice cv. ADT 43. Plant Cell Tissue Organ Culture (PCTOC) 109(1):153–165. doi:10.1007/s11240-011-0083-8

    Article  CAS  Google Scholar 

  • Kato Y, Urano J, Maki Y, Ushimaru T (1997) Purification and characterization of dehydroascorbate reductase from rice. Plant Cell Physiol 38(2):173–178

    Article  CAS  Google Scholar 

  • Kehoe DM, Degenhardt J, Winicov I, Tobin EM (1994) Two 10-bp regions are critical for phytochrome regulation of a Lemna gibba Lhcb gene promoter. Plant Cell Online 6(8):1123–1134

    Article  CAS  Google Scholar 

  • Kucho K, Yoshioka S, Taniguchi F, Ohyama K, Fukuzawa H (2003) Cis-acting elements and DNA-binding proteins involved in CO2-responsive transcriptional activation of Cah1 encoding a periplasmic carbonic anhydrase in Chlamydomonas reinhardtii. Plant Physiol 133(2):783–793

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kumar D, Patro S, Ghosh J, Das A, Maiti IB, Dey N (2012) Development of a salicylic acid inducible minimal sub-genomic transcript promoter from Figwort mosaic virus with enhanced root-and leaf-activity using TGACG motif rearrangement. Gene 503(1):36–47

    Article  PubMed  CAS  Google Scholar 

  • Lam E, Benfey PN, Gilmartin PM, Fang R-X, Chua N-H (1989) Site-specific mutations alter in vitro factor binding and change promoter expression pattern in transgenic plants. Proc Natl Acad Sci 86(20):7890–7894

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li G, Peng X, Wei L, Kang G (2013) Salicylic acid increases the contents of glutathione and ascorbate and temporally regulates the related gene expression in salt-stressed wheat seedlings. Gene 529(2):321–325. doi:10.1016/j.gene.2013.07.093

    Article  PubMed  CAS  Google Scholar 

  • Liu YJ, Yuan Y, Liu YY, Liu Y, Fu JJ, Zheng J, Wang GY (2012) Gene families of maize glutathione–ascorbate redox cycle respond differently to abiotic stresses. J Plant Physiol 169(2):183–192. doi:10.1016/j.jplph.2011.08.018

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Sivamani E, Li X, Qu R (2008) Activity of the 5′ regulatory regions of the rice polyubiquitin rubi3 gene in transgenic rice plants as analyzed by both GUS and GFP reporter genes. Plant Cell Rep 27(10):1587–1600. doi:10.1007/s00299-008-0577-y

    Article  PubMed  CAS  Google Scholar 

  • Luo Q, Li Y, Gu H, Zhao L, Gu X, Li W (2013) The promoter of soybean photoreceptor GmPLP1 gene enhances gene expression under plant growth regulator and light stresses. Plant Cell Tissue Organ Culture (PCTOC) 114(1):109–119

    Article  CAS  Google Scholar 

  • Ma Q, Dai X, Xu Y, Guo J, Liu Y, Chen N, Chong K (2009) Enhanced tolerance to chilling stress in OsMYB3R-2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes. Plant Physiol 150(1):244–256. doi:10.1104/pp.108.133454

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • McElroy D, Blowers AD, Jenes B, Wu R (1991) Construction of expression vectors based on the rice actin 1 (Act1) 5′ region for use in monocot transformation. Mol Gen Genet MGG 231(1):150–160. doi:10.1007/bf00293832

    Article  CAS  Google Scholar 

  • Meng L, Bregitzer P, Zhang S, Lemaux PG (2003) Methylation of the exon/intron region in the Ubi1 promoter complex correlates with transgene silencing in barley. Plant Mol Biol 53(3):327–340. doi:10.1023/B:PLAN.0000006942.00464.e3

    Article  PubMed  CAS  Google Scholar 

  • Mochida K, Yoshida T, Sakurai T, Yamaguchi-Shinozaki K, Shinozaki K, Tran L-S (2010) LegumeTFDB: an integrative database of Glycine max, Lotus japonicus and Medicago truncatula transcription factors. Bioinformatics 26(2):290–291

    Article  PubMed  CAS  Google Scholar 

  • Odell JT, Nagy F, Chua N-H (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313(6005):810–812

    Article  PubMed  CAS  Google Scholar 

  • Park SH, Yi N, Kim YS, Jeong MH, Bang SW, Choi YD, Kim JK (2010) Analysis of five novel putative constitutive gene promoters in transgenic rice plants. J Exp Bot 61(9):2459–2467. doi:10.1093/jxb/erq076

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Reyes JC, Muro-Pastor MI, Florencio FJ (2004) The GATA family of transcription factors in Arabidopsis and rice. Plant Physiol 134(4):1718–1732

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schledzewski K, Mendel RR (1994) Quantitative transient gene expression: comparison of the promoters for maize polyubiquitin1, rice actin1, maize-derivedEmu andCaMV 35S in cells of barley, maize and tobacco. Transgenic Res 3(4):249–255. doi:10.1007/BF02336778

    Article  CAS  Google Scholar 

  • Schnurr JA, Guerra DJ (2000) The CaMV-35S promoter is sensitive to shortened photoperiod in transgenic tobacco. Plant Cell Rep 19(3):279–282

    Article  CAS  Google Scholar 

  • Soitamo A, Piippo M, Allahverdiyeva Y, Battchikova N, Aro E-M (2008) Light has a specific role in modulating Arabidopsis gene expression at low temperature. BMC Plant Biol 8(1):13

    Article  PubMed  PubMed Central  Google Scholar 

  • Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M, Ueguchi C (2003) The OsTB1 gene negatively regulates lateral branching in rice. Plant J 33(3):513–520

    Article  PubMed  CAS  Google Scholar 

  • Tang W, Page M (2013) Overexpression of the Arabidopsis AtEm6 gene enhances salt tolerance in transgenic rice cell lines. Plant Cell Tissue Organ Culture (PCTOC) 114(3):339–350. doi:10.1007/s11240-013-0329-8

    Article  CAS  Google Scholar 

  • Teakle GR, Manfield IW, Graham JF, Gilmartin PM (2002) Arabidopsis thaliana GATA factors: organisation, expression and DNA-binding characteristics. Plant Mol Biol 50(1):43–56

    Article  PubMed  CAS  Google Scholar 

  • Urano J, Nakagawa T, Maki Y, Masumura T, Tanaka K, Murata N, Ushimaru T (2000) Molecular cloning and characterization of a rice dehydroascorbate reductase. FEBS Lett 466(1):107–111. doi:10.1016/S0014-5793(99)01768-8

    Article  PubMed  CAS  Google Scholar 

  • Verdaguer B, de Kochko A, Fux CI, Beachy RN, Fauquet C (1998) Functional organization of the cassava vein mosaic virus (CsVMV) promoter. Plant Mol Biol 37(6):1055–1067

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Oard JH (2003) Rice ubiquitin promoters: deletion analysis and potential usefulness in plant transformation systems. Plant Cell Rep 22(2):129–134

    Article  PubMed  CAS  Google Scholar 

  • Weeks JT, Anderson OD, Blechl AE (1993) Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiol 102(4):1077–1084. doi:10.1104/pp.102.4.1077

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yang L, Ding J, Zhang C, Jia J, Weng H, Liu W, Zhang D (2005) Estimating the copy number of transgenes in transformed rice by real-time quantitative PCR. Plant Cell Rep 23(10–11):759–763. doi:10.1007/s00299-004-0881-0

    Article  PubMed  CAS  Google Scholar 

  • Yoshida S, Tamaoki M, Shikano T, Nakajima N, Ogawa D, Motohide I, Hikaru S (2006) Cytosolic dehydroascorbate reductase is important for ozone tolerance in Arabidopsis thaliana. Plant Cell Physiol 47(2):304–308. doi:10.1093/pcp/pci246

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, McElroy D, Wu R (1991) Analysis of rice Act1 5′ region activity in transgenic rice plants. Plant Cell Online 3(11):1155–1165. doi:10.1105/tpc.3.11.1155

    CAS  Google Scholar 

  • Zimmermann P, Laule O, Schmitz J, Hruz T, Bleuler S, Gruissem W (2008) Genevestigator transcriptome meta-analysis and biomarker search using rice and barley gene expression databases. Mol Plant 1(5):851–857

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Changlin Wang (Washington State University) for help with the manuscript. This research was supported by the National Natural Science Foundation of China (NSFC Grant No. 31100216) and by the Creative Foundation of the Anhui Agricultural Academy of Sciences (13C0101 & 14B0113).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng-Cheng Wei.

Additional information

Communicated by Huw D. Jones.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 33 kb)

Supplementary material 2 (DOC 50 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Xu, RF., Qin, RY. et al. Isolation and functional characterization of a novel rice constitutive promoter. Plant Cell Rep 33, 1651–1660 (2014). https://doi.org/10.1007/s00299-014-1644-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-014-1644-1

Keywords

Navigation