Skip to main content
Log in

Ethylene signaling and regulation in plant growth and stress responses

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Gaseous phytohormone ethylene affects many aspects of plant growth and development. The ethylene signaling pathway starts when ethylene binds to its receptors. Since the cloning of the first ethylene receptor ETR1 from Arabidopsis, a large number of studies have steadily improved our understanding of the receptors and downstream components in ethylene signal transduction pathway. This article reviews the regulation of ethylene receptors, signal transduction, and the posttranscriptional modulation of downstream components. Functional roles and importance of the ethylene signaling components in plant growth and stress responses are also discussed. Cross-reactions of ethylene with auxin and other phytohormones in plant organ growth will be analyzed. The studies of ethylene signaling in plant growth, development, and stress responses in the past decade greatly advanced our knowledge of how plants respond to endogenous signals and environmental factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abeles FB, Morgan PW, Saltveit ME Jr (1992) Ethylene in plant biology, 2nd edn. Academic Press, San Diego

  • Alonso JM, Hirayama T, Roman G et al (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148–2152

    CAS  PubMed  Google Scholar 

  • An F, Zhao Q, Ji Y et al (2010) Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell 22:2384–2401

    CAS  PubMed  Google Scholar 

  • An F, Zhang X, Zhu Z et al (2012a) Coordinated regulation of apical hook development by gibberellins and ethylene in etiolated Arabidopsis seedlings. Cell Res 22:915–927

    CAS  PubMed  Google Scholar 

  • An F, Zhao Q, Ji Y et al (2012b) Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-Box1 and 2 that requires EIN2 in Arabidopsis. Plant Cell 22:2384–2401

    Google Scholar 

  • Barry CS, Giovannoni JJ (2006) Ripening in the tomato Green-ripe mutant is inhibited by ectopic expression of a protein that disrupts ethylene signaling. Proc Natl Acad Sci USA 103:7923–7928

    CAS  PubMed  Google Scholar 

  • Barry CS, Mcquinn RP, Thompson AJ et al (2005) Ethylene insensitivity conferred by the Green-ripe and Never-ripe 2 ripening mutants of tomato. Plant Physiol 138:267–275

    CAS  PubMed  Google Scholar 

  • Bennett MJ, Marchant A, Green HG et al (1996) Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273:948–950

    CAS  PubMed  Google Scholar 

  • Beyer J (1976) A potent inhibitor of ethylene action in plants. Plant Physiol 58:268–371

    CAS  PubMed  Google Scholar 

  • Binder BM, Mortimore LA, Stepanova AN et al (2004a) Short-term growth response to Ethylene in Arabidopsis seedlings are EIN3/EIL1 independent. Plant Physiol 136:2921–2927

    CAS  PubMed  Google Scholar 

  • Binder BM, O’Malley RC, Wang WY et al (2004b) Arabidopsis seedling growth response and recovery to ethylene. A kinetic analysis. Plant Physiol 136:2913–2920

    CAS  PubMed  Google Scholar 

  • Binder BM, O’Malley RC, Wang W et al (2006) Ethylene stimulates nutations that are dependent on the ETR1 receptor. Plant Physiol 142:1690–1700

    CAS  PubMed  Google Scholar 

  • Binder BM, Walker JM, Gagne JM et al (2007) The Arabidopsis EIN3 binding F-Box proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signaling. Plant Cell 19:509–523

    CAS  PubMed  Google Scholar 

  • Binder BM, Rodríguez FI, Bleecker AB (2010) The copper transporter RAN1 is essential for biogenesis of ethylene receptors in Arabidopsis. J Bio Chem 285:37263–37270

    CAS  Google Scholar 

  • Binder BM, Chang C, Schaller GE (2012) Perception of ethylene by plants—ethylene receptors. In: McManus MT (ed) Annual plant reviews: the plant hormone ethylene, vol 44, Wiley, Oxford

  • Bisson MMA, Bleckmann A, Allekotte S, Groth G (2009) EIN2, the central regulator of ethylene signaling, is localized at the ER membrane where it interacts with the ethylene receptor ETR1. Biochem J 424:1–6

    CAS  PubMed  Google Scholar 

  • Bleecker AB, Estelle MA, Somerville C et al (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241:1086–1089

    CAS  PubMed  Google Scholar 

  • Boerjan W, Cervera MT, Delarue M et al (1995) Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7:1405–1419

    CAS  PubMed  Google Scholar 

  • Cancel JD, Larsen PB (2002) Loss-of-function mutations in the ethylene receptor ETR1 cause enhanced sensitivity and exaggerated response to ethylene in Arabidopsis. Plant Physiol 129:1557–1567

    CAS  PubMed  Google Scholar 

  • Casimiro I, Marchant A, Bhalerao RP et al (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13:843–852

    CAS  PubMed  Google Scholar 

  • Celenza JL, Grisafi PL, Fink GR (1995) A pathway for lateral root formation in Arabidopsis thaliana. Gene Dev 9:2131–2142

    CAS  PubMed  Google Scholar 

  • Chakravarthy S, Tuori RP, D’Ascenzo MD et al (2003) The tomato transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC box cis elements. Plant Cell 15:3033–3050

    CAS  PubMed  Google Scholar 

  • Chang C, Kwok SF, Bleecker AB, Meyerowitz EM (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262:539–544

    CAS  PubMed  Google Scholar 

  • Chao Q, Rothenberg M, Solano R et al (1997) Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell 89:1133–1144

    CAS  PubMed  Google Scholar 

  • Chen YF, Randlett MD, Findell JL, Schaller GE (2002) Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis. J Biol Chem 277:19861–19866

    CAS  PubMed  Google Scholar 

  • Chen YF, Shakeel SN, Bowers J, Zhao XC et al (2007) Ligand-induced degradation of the ethylene receptor ETR2 through a proteasome-dependent pathway in Arabidopsis. J Biol Chem 282:24752–24758

    CAS  PubMed  Google Scholar 

  • Chen T, Liu J, Lei G et al (2009) Effects of tobacco ethylene receptor mutations on receptor kinase activity, plant growth and stress responses. Plant Cell Physiol 50:1636–1650

    CAS  PubMed  Google Scholar 

  • Cho M, Lee SH, Cho HT (2007) P-glycoprotein4 displays auxin efflux transporter-like action in Arabidopsis root hair cells and tobacco cells. Plant Cell 19:3930–3943

    CAS  PubMed  Google Scholar 

  • Clark KL, Larsen PB, Wang XX, Chang C (1998) Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors. Proc Natl Acad Sci USA 95:5401–5406

    CAS  PubMed  Google Scholar 

  • Crocker W, Hitchcock AE, Zimmerman PW (1935) Similarities in the effects of ethylene and the plant auxins. Contrib Boyce Thompson Inst 7:231–248

    CAS  Google Scholar 

  • Dong CH, Rivarola M, Resnick JS et al (2008) Subcellular co-localization of Arabidopsis RTE1 and ETR1 supports a regulatory role for RTE1 in ETR1 ethylene signaling. Plant J 53:275–286

    CAS  PubMed  Google Scholar 

  • Dong CH, Jang M, Scharein B et al (2010) Molecular association of the Arabidopsis ETR1 ethylene receptor and a regulator of ethylene signaling, RTE1. J Biol Chem 285:40706–40713

    CAS  PubMed  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y et al (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt and cold-responsive gene expression. Plant J 33:751–763

    CAS  PubMed  Google Scholar 

  • Elliott RC, Betzner AS, Huttner E et al (1996) AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8:155–168

    CAS  PubMed  Google Scholar 

  • El-Sharkawy I, Sherif S, Mila I et al (2009) Molecular characterization of seven genes encoding ethylene-responsive transcriptional factors during plum fruit development and ripening. J Exp Bot 60:907–922

    CAS  PubMed  Google Scholar 

  • Feys BJ, Parker JE (2000) Interplay of signaling pathway in plant disease resistance. Trends Genet 16:449–455

    CAS  PubMed  Google Scholar 

  • Francis NR, Wolanin PM, Stock JB et al (2004) Three-dimensional structure and organization of a receptor/signaling complex. Proc Natl Acad Sci USA 101:17480–17485

    CAS  PubMed  Google Scholar 

  • Fukao T, Yeung E, Bailey-Serres J (2011) The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell 23:412–427

    CAS  PubMed  Google Scholar 

  • Gagne JM, Smalle J, Gingerich DJ et al (2004) Arabidopsis EIN3-binding F-box1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proc Natl Acad Sci USA 101:6803–6808

    CAS  PubMed  Google Scholar 

  • Gamble RL, Coonfield ML, Schaller GE (1998) Histidine kinase activity of the ETR1 ethylene receptor from Arabidopsis. Proc Natl Acad Sci USA 95:7825–7829

    CAS  PubMed  Google Scholar 

  • Gao Z, Schaller GE (2009) The role of receptor interactions in regulating ethylene signal transduction. Plant Signal Behav 4:1152–1153

    PubMed  Google Scholar 

  • Gao R, Stock AM (2009) Biological insights from structures of two-component proteins. Annu Rev Microbiol 63:133–154

    CAS  PubMed  Google Scholar 

  • Gao ZY, Chen YF, Randlett MD et al (2003) Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes. J Biol Chem 278:34725–34732

    CAS  PubMed  Google Scholar 

  • Gao Z, Wen CK, Binder BM et al (2008) Heteromeric interactions among ethylene receptors mediate signaling in Arabidopsis. J Biol Chem 283:23801–23810

    CAS  PubMed  Google Scholar 

  • Geisler M, Blakeslee JJ, Bouchard R et al (2005) Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant J 44:179–194

    CAS  PubMed  Google Scholar 

  • Gestwicki JE, Kiessling LL (2002) Inter-receptor communication through arrays of bacterial chemoreceptors. Nature 415:81–84

    CAS  PubMed  Google Scholar 

  • Glazebrook J (2001) Genes controlling expression of defence responses in Arabidopsis—2011 status. Curr Opin Plant Biol 4:301–308

    CAS  PubMed  Google Scholar 

  • Grefen C, Stadele K, Ruzicka K et al (2008) Subcellular localization and in vivo interaction of the Arabidopsis thaliana ethylene receptor family members. Mol Plant 1:308–320

    CAS  PubMed  Google Scholar 

  • Gu YQ, Yang C, Thara VK et al (2000) Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto Kinase. Plant Cell 12:771–785

    CAS  PubMed  Google Scholar 

  • Guo H, Ecker JR (2003) Plant responses to ethylene gas are mediated by SCFEBF1/EBF2-dependent proteolysis of EIN3 transcription factor. Cell 115:667–677

    CAS  PubMed  Google Scholar 

  • Gutterson N, Reuber TL (2004) Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol 7:465–471

    CAS  PubMed  Google Scholar 

  • Guzmán P, Ecker JR (1990) Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2:513–523

    PubMed  Google Scholar 

  • Hall AE, Bleecker AB (2003) Analysis of combinatorial loss-of-function mutants in the Arabidopsis ethylene receptors reveals that the ers1 etr1 double mutant has severe developmental defects that are EIN2 dependent. Plant Cell 15:2032–2041

    CAS  PubMed  Google Scholar 

  • Hall AE, Chen QG, Findell JL et al (1999) The relationship between ethylene binding and dominant insensitivity conferred by mutant forms of the ETR1 ethylene receptor. Plant Physiol 121:291–300

    CAS  PubMed  Google Scholar 

  • Hall BP, Shakeel SN, Amir M et al (2012) Histidine kinase activity of the ethylene receptor ETR1 facilitates the ethylene response in Arabidopsis. Plant Physiol 159:682–695

    CAS  PubMed  Google Scholar 

  • Hattori Y, Nagai K, Furukawa S et al (2009) The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460:1026–1030

    CAS  PubMed  Google Scholar 

  • He W, Brumos J, Li H et al (2011) A small-molecule screen identifies L-Kynurenine as a competitive inhibitor of TAA1/TAR activity in ethylene-directed auxin biosynthesis and root growth in Arabidopsis. Plant Cell 23:3944–3960

    CAS  PubMed  Google Scholar 

  • Holm RE, Abeles FB (1968) The role of ethylene in 2,4-D-induced growth inhibition. Planta 78:293–304

    CAS  Google Scholar 

  • Hua J, Meyerowitz EM (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94:261–271

    CAS  PubMed  Google Scholar 

  • Hua J, Chang C, Sun Q, Meyerowitz EM (1995) Ethylene insensitivity conferred by Arabidopsis ERS gene. Science 269:1712–1714

    CAS  PubMed  Google Scholar 

  • Hua J, Sakai H, Nourizadeh S et al (1998) EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell 10:1321–1332

    CAS  PubMed  Google Scholar 

  • Huang Y, Li H, Hutchison CE et al (2003) Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J 33:221–233

    CAS  PubMed  Google Scholar 

  • Ju CL, Yoon GM, Shemansky JM et al (2012) CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc Natl Acad Sci USA 109:19486–194191

    Google Scholar 

  • Kevany BM, Tieman DM, Taylor MG et al (2007) Ethylene receptor degradation controls the timing of ripening in tomato fruit. Plant J 51:458–467

    CAS  PubMed  Google Scholar 

  • Kieber JJ, Rothenberg M, Roman G et al (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72:427–441

    CAS  PubMed  Google Scholar 

  • Klee H (2006) Highly conserved proteins that modify plant ethylene responses. Proc Natl Acad Sci USA 103:7537–7538

    CAS  PubMed  Google Scholar 

  • Le J, Vandenbussche F, Van Der Straeten D, Verbelen JP (2001) In the early response of Arabidopsis roots to ethylene, cell elongation is up- and down-regulated and uncoupled from differentiation. Plant Physiol 125:519–522

    CAS  PubMed  Google Scholar 

  • Lehman A, Black R, Ecker JR (1996) HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl. Cell 85:183–194

    CAS  PubMed  Google Scholar 

  • Lewis DR, Negi S, Sukumar P, Muday GK (2011) Ethylene inhibits lateral root development, increases IAA transport and expression of PIN3 and PIN7 auxin efflux carriers. Development 138:3485–3495

    CAS  PubMed  Google Scholar 

  • Li H, Johnson P, Stepanova A et al (2004) Convergence of signaling pathways in the control of differential cell growth in Arabidopsis. Dev Cell 7:193–204

    CAS  PubMed  Google Scholar 

  • Lin Z, Arciga-Reyes L, Zhong SL et al (2008) SlTPR1, a tomato tetratricopeptide repeat protein, interacts with the ethylene receptors NR and LeETR1, modulating ethylene and auxin responses and development. J Exp Bot 59:4271–4287

    CAS  PubMed  Google Scholar 

  • Lin Z, Ho CW, Grierson D (2009) AtTRP1 encodes a novel TPR protein that interacts with the ethylene receptor ERS1 and modulates development in Arabidopsis. J Exp Bot 60:3697–3714

    CAS  PubMed  Google Scholar 

  • Liu Q, Wen CK (2012) Arabidopsis ETR1 and ERS1 differentially repress the ethylene response in combination with other ethylene receptor genes. Plant Physiol 158:1193–1207

    CAS  PubMed  Google Scholar 

  • Liu Q, Xu C, Wen CK (2010) Genetic and transformation studies reveal negative regulation of ERS1 ethylene receptor signaling in Arabidopsis. BMC Plant Biol 10:60

    PubMed  Google Scholar 

  • Ma B, Cui ML, Sun HJ et al (2006) Subcellular localization and membrane topology of the melon ethylene receptor CmERS1. Plant Physiol 141:587–597

    CAS  PubMed  Google Scholar 

  • Ma Q, Du W, Brandizzi F et al (2012) Differential control of ethylene responses by Green-Ripe and Green-Ripe Like1 provides evidence for distinct ethylene signaling modules in tomato. Plant Physiol 160:1968–1984

    CAS  PubMed  Google Scholar 

  • Maddock JR, Shapiro L (1993) Polar location of the chemoreceptor complex in the Escherichia coli cell. Science 259:1717–1723

  • Masucci JD, Schiefelbein JW (1996) Hormones act downstream of TTG and GL2 to promote root hair outgrowth during epidermis development in the Arabidopsis root. Plant Cell 8:1505–1517

    CAS  PubMed  Google Scholar 

  • McDaniel BK (2012) Elucidating the effect of silver on ethylene signaling in Arabidopsis thaliana. University of Tennessee, Master’s Thesis

    Google Scholar 

  • Mizuno T (1997) Compilation of all genes encoding two-component phosphotransfer signal transducers in the genome of Escherichia coli. DNA Res 4:161–168

    CAS  PubMed  Google Scholar 

  • Moussatche P, Klee HJ (2004) Autophosphorylation activity of the Arabidopsis ethylene receptor multigene family. J Biol Chem 279:48734–48741

    CAS  PubMed  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and Rice. Plant Physiol 140:411–432

    CAS  PubMed  Google Scholar 

  • Negi S, Ivanchenko MG, Muday GK (2008) Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana. Plant J 55:175–187

    CAS  PubMed  Google Scholar 

  • Nie H, Zhao C, Wu G et al (2012) SR1, a calmodulin-binding transcription factor, modulates plant defense and ethylene-induced senescence by directly regulating NDR1 and EIN3. Plant Physiol 158:1847–1859

    CAS  PubMed  Google Scholar 

  • O’Malley RC, Rodriguez FI, Esch JJ et al (2005) Ethylene-binding activity, gene expression levels, and receptor system output for ethylene receptor family members from Arabidopsis and tomato. Plant J 41:651–659

    PubMed  Google Scholar 

  • Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interacts with an ethylene-responsive element. Plant Cell 7:173–182

    CAS  PubMed  Google Scholar 

  • Ohta M, Ohme-Takagi M, Shinshi H (2000) Three ethylene responsive-transcription factors in tobacco with distinct transactivation functions. Plant J 22:29–38

    CAS  PubMed  Google Scholar 

  • Okamuro JK, Caster B, Villarroel R et al (1997) The AP2 domain of APETACA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acaid Sci USA 94:7076–7081

    CAS  Google Scholar 

  • Park JM, Park CJ, Lee SB et al (2001) Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13:1035–1046

    CAS  PubMed  Google Scholar 

  • Petrásek J, Mravec J, Bouchard R et al (2006) PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312:914–918

    PubMed  Google Scholar 

  • Pickett FB, Wilson AK, Estelle M (1990) The aux1 mutation of Arabidopsis confers both auxin and ethylene resistance. Plant Physiol 94:1462–1466

    CAS  PubMed  Google Scholar 

  • Plett JM, Cvetkovska M, Makenson P et al (2009a) Arabidopsis ethylene receptors have different roles in fumonisin B1-induced cell death. Physiol Mol Plant P 74:18–26

    CAS  Google Scholar 

  • Plett JM, Mathur J, Regan S (2009b) Ethylene receptor ETR2 controls trichome branching by regulating microtubule assembly in Arabidopsis thaliana. J Exp Bot 60:3923–3933

    CAS  PubMed  Google Scholar 

  • Potuschak T, Lechner E, Parmentier Y et al (2003) EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2. Cell 115:679–689

    CAS  PubMed  Google Scholar 

  • Qiao H, Chang KN, Yazaki J, Ecker JR (2009) Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene response in Arabidopsis. Genes Dev 23:512–421

    Google Scholar 

  • Qiao H, Shen ZX, Huang SSC et al (2012) Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas. Science 338:390–393

    CAS  PubMed  Google Scholar 

  • Qiu L, Xie F, Yu J, Wen CK (2012) Arabidopsis RTE1 is essential to ethylene receptor ETR1 amino-terminal signaling independent of CTR1. Plant Physiol 159:1263–1276

    CAS  PubMed  Google Scholar 

  • Qu X, Schaller GE (2004) Requirement of the histidine kinase domain for signal transduction by the ethylene receptor ETR1. Plant Physiol 136:2961–2970

    CAS  PubMed  Google Scholar 

  • Qu X, Hall BP, Gao Z, Schaller GE (2007) A strong constitutive ethylene-response phenotype conferred on Arabidopsis plants containing null mutations in the ethylene receptors ETR1 and ERS1. BMC Plant Biol 7:3

    PubMed  Google Scholar 

  • Rahman A, Amakawa T, Goto N, Tsurumi S (2001) Auxin is a positive regulator for ethylene-mediated response in the growth of Arabidopsis roots. Plant Cell Physiol 42:301–307

    CAS  PubMed  Google Scholar 

  • Rahman A, Hosokawa S, Oono Y et al (2002) Auxin and ethylene response interactions during Arabidopsis root hair development dissected by auxin influx modulators. Plant Physiol 130:1908–1917

    CAS  PubMed  Google Scholar 

  • Reed RC, Brady SR, Muday GK (1998) Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis. Plant Physiol 118:1369–1378

    CAS  PubMed  Google Scholar 

  • Resnick JS, Wen CK, Shockey JA, Chang C (2006) REVERSION-TO-ETHYLENE SENSITIVITY1, a conserved gene that regulates ethylene receptor function in Arabidopsis. Proc Natl Acad Sci USA 103:7917–7922

    CAS  PubMed  Google Scholar 

  • Resnick JS, Rivarola M, Chang C (2008) Involvement of RTE1 in conformational changes promoting ETR1 ethylene receptor signaling in Arabidopsis. Plant J 56:423–431

    CAS  PubMed  Google Scholar 

  • Rivarola M, Mcclellan CA, Resnick JS, Chang C (2009) ETR1-specific mutations distinguish ETR1 from other Arabidopsis ethylene receptors as revealed by genetic interaction with RTE1. Plant Physiol 150:547–551

    CAS  PubMed  Google Scholar 

  • Rodriguez FI, Esch JJ, Hall AE et al (1999) A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 283:996–998

    CAS  PubMed  Google Scholar 

  • Růžička K, Ljung K, Vanneste S et al (2007) Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19:2197–2212

    PubMed  Google Scholar 

  • Sakai H, Hua J, Chen QHG et al (1998) ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proc Natl Acad Sci USA 95:5812–5817

    CAS  PubMed  Google Scholar 

  • Sakuma Y, Liu Q, Joseph GD et al (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Co 290:998–1009

    CAS  Google Scholar 

  • Schaller GE, Bleecker AB (1995) Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 Gene. Science 270:1809–1811

    CAS  PubMed  Google Scholar 

  • Schaller GE, Kieber JJ (2002) Ethylene. In: Somerville C, Meyerowitz EM (eds) The Arabidopsis book. American society of plant biologists, Rockville. doi:101199/tab.0071

  • Seifert GJ, Barber C, Wells B, Roberts K (2004) Growth regulators and the control of nucleotide sugar flux. Plant Cell 16:723–730

    CAS  PubMed  Google Scholar 

  • Seo YJ, Park JB, Cho YJ et al (2010) Overexpression of the ethylene-responsive factor gene BrERF4 from Brassica rapa increases tolerance to salt and drought in Arabidopsis plants. Mol Cells 30:271–277

    CAS  PubMed  Google Scholar 

  • Solano R, Stepanova A, Chao Q, Ecker JR (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Gene Dev 12:3703–3714

    CAS  PubMed  Google Scholar 

  • Stepanova AN, Yun J, Likhacheva AV, Alonso JM (2007) Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19:2169–2185

    CAS  PubMed  Google Scholar 

  • Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215

    CAS  PubMed  Google Scholar 

  • Strader LC, Chen GL, Bartel B (2010) Ethylene directs auxin to control root cell expansion. Plant J 64:874–884

    CAS  PubMed  Google Scholar 

  • Swarup R, Parry G, Graham N et al (2002) Auxin cross-talk: integration of signaling pathways to control plant development. Plant Mol Biol 49:411–426

    CAS  PubMed  Google Scholar 

  • Swarup R, Perry P, Hagenbeek D et al (2007) Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19:2186–2196

    CAS  PubMed  Google Scholar 

  • Swarup K, Benková E, Swarup R et al (2008) The auxin influx carrier LAX3 promotes lateral root emergence. Nat Cell Biol 10:946–954

    CAS  PubMed  Google Scholar 

  • Tieman DV, Taylor MG, Ciardi JA et al (2000) The tomato ethylene receptors NR and LeETR4 are negative regulators of ethylene response and exhibit functional compensation within a multigene family. Proc Natl Acad Sci USA 97:5663–5668

    CAS  PubMed  Google Scholar 

  • Tsuchisaka A, Theologis A (2004) Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members. Plant Physiol 136:2982–3000

    CAS  PubMed  Google Scholar 

  • Van der Fits L, Memelink J (2001) The jasmonate-inducible AP2/ERF-domain transcription factors ORCA3 activates gene expression via interaction with a jasmonate-responsive promoter element. Plant J 25:43–53

    PubMed  Google Scholar 

  • Varma Penmetsa R, Uribe P, Anderson J et al (2008) The Medicago truncatula ortholog of Arabidopsis EIN2, sickle, is a negative regulator of symbiotic and pathogenic microbial associations. Plant J 55:580–595

    PubMed  Google Scholar 

  • Wang K, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14(suppl):S131–S151

    CAS  PubMed  Google Scholar 

  • Wang KL, Yoshida H, Lurin C, Ecker JR (2004) Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature 428:945–950

    CAS  PubMed  Google Scholar 

  • Wen X, Zhang CL, Ji YS et al (2012) Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus. Cell Res 22:1613–1616

    CAS  PubMed  Google Scholar 

  • Wolanin PM, Stock JB (2004) Bacterial chemosensing: cooperative molecular logic. Curr Biol 14:R486–R487

    CAS  PubMed  Google Scholar 

  • Xie F, Liu Q, Wen CK (2006) Receptor signal output mediated by the ETR1 N-terminus is primarily subfamily I receptor dependent. Plant Physiol 142:492–508

    CAS  PubMed  Google Scholar 

  • Xu K, Xu X, Fukao T et al. (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705–708

    Google Scholar 

  • Xu ZS, Chen M, Li LC, Ma YZ (2011) Functions and application of the AP2/ERF transcription factor family in crop improvement. J Integr Plant Biol 53:570–585

    CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    CAS  PubMed  Google Scholar 

  • Yang T, Poovaiah BW (2002) A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants. J Biol Chem 277:45049–45058

    CAS  PubMed  Google Scholar 

  • Yang Z, Tian L, Latoszek-Green M et al (2005) Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Mol Biol 58:585–596

    CAS  PubMed  Google Scholar 

  • Yu J, Wen CK (2013) Arabidopsis aux1 rcr1 mutation alters Auxin Resistant 1 targeting and prevents expression of the auxin reporter DR5:GUS in the root apex. J Exp Bot. doi:10.1093/jxb/ers371

    Google Scholar 

  • Zhang JY, Broeckling CD, Blancaflor EB et al (2005) Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J 42:689–707

    CAS  PubMed  Google Scholar 

  • Zhang GY, Chen M, Li LC et al (2009) Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot 60:3781–3796

    CAS  PubMed  Google Scholar 

  • Zhang L, Li Z, Quan R et al (2011) An AP2 domain-containing gene, ESE1, targeted by the ethylene signaling component EIN3 is important for the salt response in Arabidopsis. Plant Physiol 157:854–865

    CAS  PubMed  Google Scholar 

  • Zhang W, Zhou X, Wen CK (2012) Modulation of ethylene responses by OsRTH1 overexpression reveals the biological significance of ethylene in rice seedling growth and development. J Exp Bot 63:4151–4164

    CAS  PubMed  Google Scholar 

  • Zhong S, Lin Z, Grierson D (2008) Tomato ethylene receptor-CTR interactions: visualization of NEVER-RIPE interactions with multiple CTRs at the endoplasmic reticulum. J Exp Bot 59:965–972

    CAS  PubMed  Google Scholar 

  • Zhou X, Liu Q, Xie F et al (2007) RTE1 is a Golgi-associated and ETR1-dependent negative regulator of ethylene responses. Plant Physiol 145:75–86

    CAS  PubMed  Google Scholar 

  • Zhu Q, Zhang J, Gao X et al (2010) The Arabidopsis AP2/ERF transcription factor RAP2.6 participates in ABA, salt and osmotic stress responses. Gene 457:1–12

    CAS  PubMed  Google Scholar 

  • Zhu Z, An F, Feng Y et al (2011) Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc Natl Acad Sci USA 108:12539–12544

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The critical reading of the manuscript by Caren Chang (University of Maryland) is greatly appreciated. This study was supported by Shandong Taishan Scholar program, Shandong Natural Science Foundation (ZR2012CM022) to C.-H. D., and Shandong Key Laboratory of Plant Biotechnology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Hai Dong.

Additional information

Communicated by P. Kumar.

F. Wang, X. Cui and Y. Sun have contributed equally to this work.

A contribution to the Special Issue: Plant Hormone Signaling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Cui, X., Sun, Y. et al. Ethylene signaling and regulation in plant growth and stress responses. Plant Cell Rep 32, 1099–1109 (2013). https://doi.org/10.1007/s00299-013-1421-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-013-1421-6

Keywords

Navigation