Skip to main content
Log in

Wuschel overexpression promotes somatic embryogenesis and induces organogenesis in cotton (Gossypium hirsutum L.) tissues cultured in vitro

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

This work shows that overexpression of the WUS gene from Arabidopsis enhanced the expression of embryogenic competence and triggered organogenesis from some cells of the regenerated embryo-like structures.

Abstract

Agrobacterium-mediated genetic transformation of cotton was described in the late 1980s, but is still time consuming and largely genotype dependant due to poor regeneration. To help solve this bottleneck, we over-expressed the WUSCHEL (WUS) gene, a homeobox transcription factor cloned in Arabidopsis thaliana, known to stimulate organogenesis and/or somatic embryogenesis in Arabidopsis tissues cultured in vitro. The AtWUS gene alone, and AtWUS gene fused to the GFP marker were compared to the GFP gene alone and to an empty construct used as a control. Somatic embryogenesis was improved in WUS expressed calli, as the percentage of explants giving rise to embryogenic tissues was significantly higher (×3) when WUS gene was over-expressed than in the control. An interesting result was that WUS embryogenic lines evolved in green embryo-like structures giving rise to ectopic organogenesis never observed in any of our previous transformation experiments. Using our standard in vitro culture protocol, the overexpression of AtWUS in tissues of a recalcitrant variety did not result in the production of regenerated plants. This achievement will still require the optimization of other non-genetic factors, such as the balance of exogenous phytohormones. However, our results suggest that targeted expression of the WUS gene is a promising strategy to improve gene transfer in recalcitrant cotton cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alemanno L, Devic M, Niemenak N, Sanier C, Guilleminot J, Rio M, Verdeil JL, Montoro P (2008) Characterization of leafy cotyledon1-like during embryogenesis in Theobroma cacao L. Planta 227(4):853–866. doi:10.1007/s00425-007-0662-4

    Article  PubMed  CAS  Google Scholar 

  • Arroyo-Herrera A, Ku Gonzalez A, Canche Moo R, Quiroz-Figueroa F, Loyola-Vargas V, Rodriguez-Zapata L, Burgeff D′Hondt C, Suárez-Solís V, Castaño E (2008) Expression of WUSCHEL in Coffea canephora causes ectopic morphogenesis and increases somatic embryogenesis. Plant Cell Tissue Organ Cult 94(2):171–180. doi:10.1007/s11240-008-9401-1

  • Atta R, Laurens L, Boucheron-Dubuisson E, Guivarc’h A, Carnero E, Giraudat-Pautot V, Rech P, Chriqui D (2009) Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. Plant J 57(4):626–644

    Article  PubMed  CAS  Google Scholar 

  • Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu CM, van Lammeren AA, Miki BL, Custers JB, van Lookeren Campagne MM (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14(8):1737–1749

    Article  PubMed  CAS  Google Scholar 

  • Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R (2000) Dependence of stem cell fate in arabidopsis on a feedback loop regulated by CLV3 activity. Science 289(5479):617–619

    Article  PubMed  CAS  Google Scholar 

  • Buffard-Morel J, Verdeil JL, Pannetier C (1992) Somatic embryogenesis of coconut (Cocos nucifera L.) from leaf explants: histological study. Can J Bot 70(4):735–741

    Google Scholar 

  • Cary A, Che P, Howell S (2002) Developmental events and shoot apical meristem gene expression patterns during shoot development in Arabidopsis thaliana. Plant J 32(6):867–877

    Article  PubMed  CAS  Google Scholar 

  • Cousins Y, Lyon B, Llewellyn D (1991) Transformation of an Australian cotton cultivar: prospects for cotton improvement through genetic engineering. Aust. J. Plant Physiol 18

  • Deblaere R, Bytebier B, De Greve H, Deboeck F, Schell J, Van Montagu M, Leemans J (1985) Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants. Nucleic Acids Res 13(13):4777–4788

    Article  PubMed  CAS  Google Scholar 

  • Denancé N, Ranocha P, Oria N, Barlet X, Rivière M-P, Yadeta KA, Hoffmann L, Perreau F, Clément G, Maia-Grondard A, van den Berg GCM, Savelli B, Fournier S, Aubert Y, Pelletier S, Thomma BPHJ, Molina A, Jouanin L, Marco Y, Goffner D (2012) Arabidopsis wat1 (walls are thin1)-mediated resistance to the bacterial vascular pathogen, Ralstonia solanacearum, is accompanied by cross-regulation of salicylic acid and tryptophan metabolism. Plant J 73(2):225–239. doi:10.1111/tpj.12027

    PubMed  Google Scholar 

  • Endrizzi K, Moussian B, Haecker A, Levin JZ, Laux T (1996) The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J 10(6):967–979

    Article  PubMed  CAS  Google Scholar 

  • Feher A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult 74(3):201–228. doi:10.1023/a:1024033216561

    Article  CAS  Google Scholar 

  • Finer J, McMullen M (1990) Transformation of cotton (Gossypium hirsutum L.) by Agrobacterium tumefaciens and regeneration of transgenic plants. Plant Cell Rep 8(10):203–206

    Google Scholar 

  • Firoozabady E, DeBoer DL (1993) Plant regeneration via somatic embryogenesis in many cultivars of cotton (Gossypium hirsutum L.). In vitro Cell Dev Biol Plant J Tissue Cult Assoc 29(4):166–173

    Google Scholar 

  • Firoozabady E, Deboer DL, Murray EE, Merlo DJ, Adang MJ, Halk EL (1987) Transformation of cotton (Gossypium hirsutum L.) by Agrobacterium tumefaciens and regeneration of transgenic plants. Plant Mol Biol 10(2):105–116. doi:10.1007/BF00016148

    Google Scholar 

  • Gallois JL, Woodward C, Reddy GV, Sablowski R (2002) Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in Arabidopsis. Development 129(13):3207–3217 (Unspdev0423)

    PubMed  CAS  Google Scholar 

  • Gallois JL, Nora FR, Mizukami Y, Sablowski R (2004) WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem. Genes Dev 18(4):375–380. doi:10.1101/gad.291204

    Google Scholar 

  • Gawel NJ, Rao AP, Robacker CD (1986) Somatic embryogenesis from leaf and petiole callus-cultures of Gossypium hirsutum L. Plant Cell Rep 5(6):457–459

    Article  Google Scholar 

  • Gordon S, Heisler M, Reddy G, Ohno C, Das P, Meyerowitz E (2007) Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development 134(19):3539–3548

    Article  PubMed  CAS  Google Scholar 

  • Gordon SP, Chickarmane VS, Ohno C, Meyerowitz EM (2009) Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proc Natl Acad Sci 106(38):16529–16534

    Article  PubMed  CAS  Google Scholar 

  • Harding EW, Tang W, Nichols KW, Fernandez DE, Perry SE (2003) Expression and maintenance of embryogenic potential is enhanced through constitutive expression of AGAMOUS-Like 15. Plant Physiol 133(2):653–663. doi:10.1104/pp.103.023499

    Article  PubMed  CAS  Google Scholar 

  • Hu L, Yang X, Yuan D, Zeng F, Zhang X (2011) GhHmgB3 deficiency deregulates proliferation and differentiation of cells during somatic embryogenesis in cotton. Plant Biotechnol J 9(9):1038–1048. doi:10.1111/j.1467-7652.2011.00617.x

    Article  PubMed  CAS  Google Scholar 

  • Jimenez V (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47(2–3):91–110. doi:10.1007/s10725-005-3478-x

    Article  CAS  Google Scholar 

  • Jin S, Zhang X, Nie Y, Guo X, Liang S, Zhu H (2006) Identification of a novel elite genotype for in vitro culture and genetic transformation of cotton. Biol Plant 50(4):519–524. doi:10.1007/s10535-006-0082-5

    Article  CAS  Google Scholar 

  • Kieffer M, Stern Y, Cook H, Clerici E, Maulbetsch C, Laux T, Davies B (2006) Analysis of the transcription factor WUSCHEL and its functional homologue in antirrhinum reveals a potential mechanism for their roles in meristem maintenance. Plant Cell Online 18(3):560–573

    Article  CAS  Google Scholar 

  • Klimaszewska K, Pelletier G, Overton C, Stewart D, Rutledge RG (2010) Hormonally regulated overexpression of Arabidopsis WUS and conifer LEC1 (CHAP3A) in transgenic white spruce: implications for somatic embryo development and somatic seedling growth. Plant Cell Rep 29(7):723–734. doi:10.1007/s00299-010-0859-z

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Sharma P, Pental D (1998) A genetic approach to in vitro regeneration of non-egenerating cotton (Gossypium hirsutum L.) cultivars. Plant Cell Rep 18(1/2):59–63

    Google Scholar 

  • Laux T, Mayer KF, Berger J, Jürgens G (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122(1):87–96

    PubMed  CAS  Google Scholar 

  • Lazzeri P, Hildebrand D, Collins G (1987) Soybean somatic embryogenesis—effects pf hormones and culture manipulations. Plant Cell Tissue Organ Cult 10(3):197–208. doi:10.1007/BF00037304

    Article  CAS  Google Scholar 

  • Leibfried A, To JP, Busch W, Stehling S, Kehle A, Demar M, Kieber JJ, Lohmann JU (2005) WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438(7071):1172–1175. doi:10.1038/nature04270

    Google Scholar 

  • Liu X, Kim YJ, Müller R, Yumul RE, Liu C, Pan Y, Cao X, Goodrich J, Chen X (2011) AGAMOUS terminates floral stem cell maintenance in Arabidopsis by directly repressing WUSCHEL through recruitment of Polycomb Group proteins. Plant Cell 23(10):3654–3670. doi:10.1105/tpc.111.091538

    Google Scholar 

  • Lotan T, Ohto M, Yee KM, West MA, Lo R, Kwong RW, Yamagishi K, Fischer RL, Goldberg RB, Harada JJ (1998) Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93(7):1195–1205

    Article  PubMed  CAS  Google Scholar 

  • Mayer KF, Schoof H, Haecker A, Lenhard M, Jürgens G, Laux T (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95(6):805–815 (pii:S0092-8674(00)81703-1)

    Google Scholar 

  • McCabe DE, Martinell BJ (1993) Transformation of elite cotton cultivars via particle bombardment of meristems. Nat Biotechnol 11(5):596–598

    Article  Google Scholar 

  • Michaux-Ferrière N, Schwendiman J (1992) Histology of somatic embryogenesis. In: Dattée Y, Dumas C, Gallais A (eds) Reproductive biology and plant breeding, pp 247–259. ISBN 3-540-54641-3

  • Mishra R, Wang H-Y, Yadav N, Wilkins T (2003) Development of a highly regenerable elite Acala cotton (Gossypium hirsutum cv; Maxxa)—a step towards genotype-independent regeneration. Plant Tissue Organ Cult 73(1):21–35

    Google Scholar 

  • Morel G, Wetmore R (1951) Tissue culture of monocotyledons. Am J Bot 38(2):138–140

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Nakagawa T, Suzuki T, Murata S, Nakamura S, Hino T, Maeo K, Tabata R, Kawai T, Tanaka K, Niwa Y, Watanabe Y, Nakamura K, Kimura T, Ishiguro S (2007) Improved gateway binary vectors: high-performance vectors for creation of fusion constructs in transgenic analysis of plants. Biosci Biotechnol Biochem 71(8):2095–2100

    Article  PubMed  CAS  Google Scholar 

  • Obembe OO, Khan T, Popoola JO (2011) Use of somatic embryogenesis as a vehicle for cotton transformation. J Med Plants Res 5(17):4009–4020

    CAS  Google Scholar 

  • Pannetier C, Giband M, Couzi P, Le TV, Mazier M, Toruneur J, Hau B (1997) Introduction of new traits into cotton through genetic engineering: insect resistance as example. Euphytica 96(1):163–166

    Article  Google Scholar 

  • Paz-Ares J, The REGIA Consortium (2002) REGIA, an EU Project on Functional Genomics of Transcription Factors from Arabidopsis thaliana. Comput Funct Genomics 3(2):102–108. doi:10.1002/cfg.146

    Article  CAS  Google Scholar 

  • Price HJ, Smith RH (1979) Somatic embryogenesis in suspension cultures of Gossypium klotzsciaanum Andress. Planta 145(3):305–307. doi:10.1007/bf00454456

    Article  CAS  Google Scholar 

  • Rose RJ, Nolan KE (2006) Genetic regulation of somatic embryogenesis with particular reference to Arabidopsis thaliana and Medicago truncatula. In Vitro Cell Dev Biol Plant 42(6):473–481. doi:10.1079/ivp2006806

    Article  CAS  Google Scholar 

  • Sablowski R (2009) Cytokinin and WUSCHEL tie the knot around plant stem cells. Proc Natl Acad Sci USA 106(38):16016–16017. doi:10.1073/pnas.0909300106

  • Sakhanokho HF, Zipf A, Raiasekaran K, Saha S, Sharma GC (2001) Induction of highly embryogenic calli and plant regeneration in upland (Gossypium hirsutum L.) and pima (Gossypium barbadense L.) cottons. Crop Sci 41(4):1235–1240

    Article  Google Scholar 

  • Sakhanokho H, Ozias A, May O, Chee P (2004) Induction of somatic embryogenesis and plant regeneration in select Georgia and Pee Dee cotton lines. Crop Sci 44(6):2199–2205

    Article  Google Scholar 

  • Schoof H, Lenhard M, Haecker A, Mayer KF, Jürgens G, Laux T (2000) The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100(6):635-644. (pii:S0092-8674(00)80700-X)

    Google Scholar 

  • Shani E, Yanai O, Ori N (2006) The role of hormones in shoot apical meristem function. Curr Opin Plant Biol 9(5):484–489. doi:10.1016/j.pbi.2006.07.008

    Article  PubMed  CAS  Google Scholar 

  • Shoemaker RC, Couche LJ, Galbraith DW (1986) Characterization of somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L.). Plant Cell Rep 5(3):178–181

    Article  Google Scholar 

  • Solis-Ramos LY, Gonzalez-Estrada T, Nahuath-Dzib S, Zapata-Rodriguez LC, Castano E (2009) Overexpression of WUSCHEL in C. chinense causes ectopic morphogenesis. Plant Cell Tissue Organ Cult 96(3):279–287. doi:10.1007/s11240-008-9485-7

    Google Scholar 

  • Su YH, Zhao XY, Liu YB, Zhang CL, O’Neill SD, Zhang XS (2009) Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis. Plant J 59(3):448–460

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Zhang X, Huang C, Guo X, Nie Y (2006) Somatic embryogenesis and plant regeneration from different wild diploid cotton (Gossypium) species. Plant Cell Rep 25(4):289–296. doi:10.1007/s00299-005-0085-2

    Google Scholar 

  • Sunilkumar G, Rathore KS (2001) Transgenic cotton: factors influencing Agrobacterium-mediated transformation and regeneration. Mol Breed 8(1)37–52

    Google Scholar 

  • Tahir M, Stasolla C (2006) Shoot apical development during in vitro embryogenesis. Can J Bot-Revue Canadienne De Botanique 84(11):1650–1659. doi:10.1139/b06-070

    Article  CAS  Google Scholar 

  • Trolinder N, Goodin J (1987) Somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L.). Plant Cell Rep 6(3):231–234

    Google Scholar 

  • Trolinder N, Goodin J (1988a) Somatic embryogenesis in cotton (Gossypium hirsutum L.) I. Effects of source of explant and hormone regime. Plant Cell Tissue Organ Cult 12(1):31–42

    Google Scholar 

  • Trolinder N, Goodin J (1988b) Somatic embryogenesis in cotton (Gossypium hirsutum L.) II Requirements for embryo development and regeneration. Plant Cell Tissue Organ Cult 12(1):43–53

    Google Scholar 

  • Trolinder N, Xhixian C (1989) Genotype specificity of the somatic embryogenesis response in cotton. Plant Cell Rep 8(3):133–136

    Google Scholar 

  • Umbeck P, Johnson G, Barton K, Swain W (1987) Genetically transformed cotton (Gossypium hirsutum L.) plants. Bio-Technology 5(3):263–266

    Google Scholar 

  • Verdeil JL, Alemanno L, Niemenak N, Tranbarger TJ (2007) Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends Plant Sci 12(6):245–252. doi:10.1016/j.tplants.2007.04.002

    Article  PubMed  CAS  Google Scholar 

  • Wilkins TA, Mishra R, Trolinder NL (2004) Agrobacterium-mediated transformation and regeneration of cotton. J Food Agric Environ 2(1):179–187

    Google Scholar 

  • Wu J, Zhang X, Nie Y, Jin S, Liang S (2004) Factors affecting somatic embryogenesis and plant regeneration from a range of recalcitrant genotypes of Chinese cottons (Gossypium hirsutum L.). In Vitro Cell Dev Biol Plant 40(4):371–375. doi:10.1079/ivp2004535

    Article  CAS  Google Scholar 

  • Wu X, Li F, Zhang C, Liu C, Zhang X (2009) Differential gene expression of cotton cultivar CCRI24 during somatic embryogenesis. J Plant Physiol 166(12):1275–1283. doi:10.1016/j.jplph.2009.01.012

    Article  PubMed  CAS  Google Scholar 

  • Xu YY, Wang XM, Li J, Li JH, Wu JS, Walker JC, Xu ZH, Chong K (2005) Activation of the WUS gene induces ectopic initiation of floral meristems on mature stem surface in Arabidopsis thaliana (vol 58, pg 773, 2005). Plant Mol Biol 58(6):915-915. doi:10.1007/s11103-005-2560-0

  • Yang X, Zhang X, Yuan D, Jin F, Zhang Y, Xu J (2012) Transcript profiling reveals complex auxin signalling pathway and transcription regulation involved in dedifferentiation and redifferentiation during somatic embryogenesis in cotton. BMC Plant Biol 12(110)

  • Zeng FC, Zhang XK, Zhu LF, Tu LL, Guo XP, Nie YH (2006) Isolation and characterization of genes associated to cotton somatic embryogenesis by suppression subtractive hybridization and macroarray. Plant Mol Biol 60(2):167–183. doi:10.1007/s11103-005-3381-x

    Article  PubMed  CAS  Google Scholar 

  • Zhang BH, Wang QL, Liu F, Wang KB, Frazier TP (2009) Highly efficient plant regeneration through somatic embryogenesis in 20 elite commercial cotton (Gossypium hirsutum L.) cultivars. Plant Omics 2(6):259–268

    CAS  Google Scholar 

  • Zhao Z, Andersen SU, Ljung K, Dolezal K, Miotk A, Schultheiss SJ, Lohmann JU (2010) Hormonal control of the shoot stem-cell niche. Nature 465(7301):1089–U1154. doi:10.1038/nature09126

    Google Scholar 

  • Zimmerman J (1993) Somatic embryogenesis—a model for early development in higher plants. Plant Cell 5(10):1411–1423. doi:10.2307/3869792

    PubMed  Google Scholar 

  • Zuo J, Niu QW, Frugis G, Chua NH (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30(3):349–359 (pii:1289)

    Google Scholar 

Download references

Acknowledgments

We thank P. Hilson, P. Laufs for their critical reading of the manuscript and J. Scarlett for checking English language. We are grateful to JC. Palauqui and F. Bonnot for their generous help in, respectively, confocal Imaging and statistical analysis. Seeds used to initiate our own seed stocks have been provided by CIRAD. This research was supported in part by Agence Nationale de la Recherche (ANR) agreement 05W 37, EUREKA project 3395 F 1203.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Pannetier.

Additional information

Communicated by L. Jouanin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouchabké-Coussa, O., Obellianne, M., Linderme, D. et al. Wuschel overexpression promotes somatic embryogenesis and induces organogenesis in cotton (Gossypium hirsutum L.) tissues cultured in vitro. Plant Cell Rep 32, 675–686 (2013). https://doi.org/10.1007/s00299-013-1402-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-013-1402-9

Keywords

Navigation