Skip to main content
Log in

Overexpression of a resveratrol synthase gene (PcRS) from Polygonum cuspidatum in transgenic Arabidopsis causes the accumulation of trans-piceid with antifungal activity

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Although resveratrol-forming stilbene synthase (STS) genes have been well characterized in many plant species, there are only a few descriptions about STS genes from Polygonum cuspidatum Sieb. et Zucc, an important medicinal crop in Asian countries. To evaluate the biological functions of a Polygonum cuspidatum resveratrol synthase gene (PcRS), the PcRS gene was expressed in Arabidopsis under the control of Cauliflower mosaic virus (CaMV) 35S promoter. Integration and expression of transgene in the plant genome of Arabidopsis was confirmed by Southern blot and Northern blot analyses. Transgenic plants accumulated a new compound in both the leaves and seeds, which was identified as trans-piceid by high-pressure liquid chromatography (HPLC) and electrospray mass spectrometry (HPLC–ESI–MS). Overexpression of PcRS in transgenic Arabidopsis caused restriction of Colletotrichum higginsianum colonization by inhibition of spore production, resulting in enhanced resistance against C. higginsianum. So, the PcRS gene could be deployed in other crop plants to significantly enhance resistance to fungal pathogens and improve the nutritional quality. In addition, altered seed coat pigmentation and significant reduction in anthocyanin levels were observed in transgenic Arabidopsis, while the expression of endogenous chalcone synthase (CHS) gene was not down-regulated. These results suggest that additional STS activities cause a lack of precursors for CHS which leads to the disturbance of the subsequent flavonoid biosynthesis steps in Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aggarwal BB, Bhardwaj A, Aggarwal RS, Seeram NP, Shishodia S, Takada Y (2004) Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res 24:2783–2840

    PubMed  CAS  Google Scholar 

  • Anekonda TS (2006) Resveratrol—a boon for treating Alzheimer’s disease? Brain Res Rev 52:316–326

    Article  PubMed  CAS  Google Scholar 

  • Athar M, Back JH, Tang X, Kim KH, Kopelovich L, Bickers DR, Kim AL (2007) Resveratrol: a review of preclinical studies for human cancer protection. Toxicol Appl Pharmacol 224:274–283

    Article  PubMed  CAS  Google Scholar 

  • Chen LW, Wang YQ, Wei LC, Shi M, Chan YS (2007) Chinese herbs and herbal extracts for neuroprotection of dopaminergic neurons and potential therapeutic treatment of Parkinson’s disease. CNS Neurol Disord Drug Targets 6:273–281

    Article  PubMed  CAS  Google Scholar 

  • Chung IM, Park MR, Rehman S, Yun SJ (2001) Tissue specific and inducible expression of resveratrol synthase gene in peanut plants. Mol Cells 12:353–359

    PubMed  CAS  Google Scholar 

  • Chung IM, Park MR, Chun JC, Yun SJ (2003) Resveratrol accumulation and resveratrol synthase gene expression in response to abiotic stresses and hormones in peanut plants. Plant Sci 164:103–109

    Article  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Coutos-Thévenot P, Poinssot B, Bonomelli A, Yean H, Breda C, Buffard D, Esnault R, Hain R, Boulay M (2001) In vitro tolerance to Botrytis cinerea of grapevine 41B rootstock in transgenic plants expressing the stilbene synthase Vst 1 gene under the control of a pathogen-inducible PR 10 promoter. J Exp Bot 52:901–910

    Article  PubMed  Google Scholar 

  • D’Introno A, Paradiso A, Scoditti E, D’Amico L, De Paolis A, Carluccio MA, Nicoletti I, DeGara L, Santino A, Giovinazzo G (2009) Antioxidant and anti-inflammatory properties of tomato fruits synthesizing different amounts of stilbenes. Plant Biotech J 7:422–429

    Article  Google Scholar 

  • Delaunois B, Cordelier S, Conreux A, Clement C, Jeandet P (2009) Molecular engineering of resveratrol in plants. Plant Biotechnol J 7:2–12

    Article  PubMed  CAS  Google Scholar 

  • Fettig S, Hess D (1999) Expression of a chimeric stilbene synthase gene in transgenic wheat lines. Transgenic Res 8:179–189

    Article  CAS  Google Scholar 

  • Fischer R, Budde I, Hain R (1997) Stilbene synthase gene expression causes changes in flower colour and male sterility in tobacco. Plant J 11:489–498

    Article  CAS  Google Scholar 

  • Giorcelli A, Sparvoli F, Mattivi F, Tava A, Balestrazzi A, Vrhovsek U, Calligari P, Bollini R, Confalonieri M (2004) Expression of the stilbene synthase (StSy) gene from grapevine in transgenic white poplar results in high accumulation of the antioxidant resveratrol glucosides. Transgenic Res 13:203–214

    Article  PubMed  CAS  Google Scholar 

  • Giovinazzo G, D’Amico L, Paradiso A, Bollino R, Sparvoli F, DeGara L (2005) Antioxidant metabolite profiles in tomato fruit constitutively expressing the grapevine stilbene synthase gene. Plant Biotech J 3:57–69

    CAS  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  PubMed  CAS  Google Scholar 

  • Hain R, Reif HJ, Krause E, Langebartels R, Kindl H, Vornam B, Wiese W, Schmelzer E, Schreier P, Stöcker R, Stenzel K (1993) Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361:153–156

    Article  PubMed  CAS  Google Scholar 

  • Hanhineva K, Kokko H, Siljanen H, Rogachev I, Aharoni A, Karenlampi SO (2009) Stilbene synthase gene transfer caused alterations in the phenylpropanoid metabolism of transgenic strawberry (Fragaria × ananassa). J Exp Bot 60:2093–2106

    Article  PubMed  CAS  Google Scholar 

  • Hanumappa M, Choi G, Ryu S, Choi G (2007) Modulation of flower colour by rationally designed dominant-negative chalcone synthase. J Exp Bot 58:2471–2478

    Article  PubMed  CAS  Google Scholar 

  • Hipskind JD, Paiva NL (2000) Constitutive accumulation of a resveratrol glucoside in transgenic alfalfa increases resistance to Phoma medicaginis. Mol Plant Microbe Interact 13:551–562

    Article  PubMed  CAS  Google Scholar 

  • Hobbs SL, Warkentin TD, DeLong CM (1993) Transgene copy number can be positively or negatively associated with transgene expression. Plant Mol Biol 21:17–26

    Article  PubMed  CAS  Google Scholar 

  • Hüsken A, Baumert A, Milkowski C, Becker HC, Strack D, Mollers C (2005) Resveratrol glucoside (Piceid) synthesis in seeds of transgenic oilseed rape (Brassica napus L.). Theor Appl Genet 111:1553–1562

    Article  PubMed  Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del FC, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pe ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quetier F, Wincker P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  PubMed  CAS  Google Scholar 

  • Jeandet P, Douillet-Breuil AC, Bessis R, Debord S, Sbaghi M, Adrian M (2002) Phytoalexins from the Vitaceae: biosynthesis, phytoalexins gene expression in transgenic plants, antifungal activity and metabolism. J Agric Food Chem 50:2731–2741

    Article  PubMed  CAS  Google Scholar 

  • Kim KD, Oh BJ, Yang JM (1999) Differential interactions of a Colletotrichum gloeosporioides isolate with green and red pepper fruits. Phytoparasitica 27:1–10

    Article  Google Scholar 

  • Kobayashi S, Ding CK, Nakamura Y, Nakajima I, Matsumoto R (2000) Kiwifruits (Actinidia deliciosa) transformed with a Vitis stilbene synthase gene produce piceid (resveratrol-glucoside). Plant Cell Rep 19:904–910

    Article  CAS  Google Scholar 

  • Leckband G, Lörz H (1998) Transformation and expression of a stilbene synthase gene of Vitis vinifera L. in barley and wheat for increased fungal resistance. Theor Appl Genet 96:1004–1012

    Article  CAS  Google Scholar 

  • Lim JD, Yun SJ, Chung IM, Yu CY (2005) Resveratrol synthase transgene expression and accumulation of resveratrol glycoside in Rehmannia glutinosa. Mol Breed 16:219–233

    Article  CAS  Google Scholar 

  • Liu S, Hu Y, Wang X, Zhong J, Lin Z (2006) High content of resveratrol in lettuce transformed with a stilbene synthase gene of Parthenocissus henryana. J Agric Food Chem 54:8082–8085

    Article  PubMed  CAS  Google Scholar 

  • Ma LQ, Guo YW, Gao DY, Ma DM, Wang YN, Li GF, Liu BY, Wang H, Ye HC (2009a) Identification of a Polygonum cuspidatum three-intron gene encoding a type III polyketide synthase producing both naringenin and p-hydroxybenzalacetone. Planta 229:1077–1086

    Article  PubMed  CAS  Google Scholar 

  • Ma LQ, Pang XB, Shen HY, Pu GB, Wang HH, Lei CY, Wang H, Li GF, Liu BY, Ye HC (2009b) A novel type III polyketide synthase encoded by a three-intron gene from Polygonum cuspidatum. Planta 229:457–469

    Article  PubMed  CAS  Google Scholar 

  • Melchior F, Kindl H (1991) Coordinate- and elicitor-dependent expression of stilbene synthase and phenylalanine ammonialyase genes in Vitis cv. Optima. Arch Biochem Biophys 288:552–557

    Article  PubMed  CAS  Google Scholar 

  • Nakatsuka T, Pitaksutheepong C, Yamamura S, Nishihara M (2007) Induction of differential flower pigmentation patterns by RNAi using promoters with distinct tissue-specific activity. Plant Biotechnol Rep 1:251–257

    Article  Google Scholar 

  • Narusaka Y, Narusaka M, Park P, Kubo Y, Hirayama T, Seki M, Shiraishi T, Ishida J, Nakashima M, Enju A, Sakurai T, Satou M, Kobayashi M, Shinozaki K (2004) RCH1, a locus in Arabidopsis that confers resistance to the hemibiotrophic fungal pathogen Colletotrichum higginsianum. MPMI 17:749–762

    Article  PubMed  CAS  Google Scholar 

  • Nicoletti I, De Rossi A, Giovinazzo G, Corradini D (2007) Identification and quantification of stilbenes in fruits of transgenic tomato plants (Lycopersicon esculentum Mill.) by reversed phase HPLC with photodiode array and mass spectrometry detection. J Agric Food Chem 55:3304–3311

    Article  PubMed  CAS  Google Scholar 

  • O’Connell R, Herbert C, Sreenivasaprasad S, Khatib M, Esquerré-Tugayé MT, Dumas B (2004) A novel Arabidopsis-Colletotrichum pathosystem for the molecular dissection of plant-fungal interactions. MPMI 17:272–282

    Article  PubMed  Google Scholar 

  • Pirola L, Frojdo S (2008) Resveratrol: one molecule, many targets. IUBMB Life 60:323–332

    Article  PubMed  CAS  Google Scholar 

  • Richter A, de Kathen A, de Lorenzo G, Briviba K, Hain R, Ramsay G, Jacobsen HJ, Kiesecker H (2006) Transgenic peas (Pisum sativum) expressing polygalacturonase inhibiting protein from raspberry (Rubus idaeus) and stilbene synthase from grape (Vitis vinifera). Plant Cell Rep 25:1166–1173

    Article  PubMed  CAS  Google Scholar 

  • Saiko P, Szakmary A, Jaeger W, Szekeres T (2008) Resveratrol and its analogs: defense against cancer, coronary disease and neurodegenerative maladies or just a fad? Mutat Res 658:68–94

    Article  PubMed  CAS  Google Scholar 

  • Samappito S, Page JE, Schmidt J, De-Eknamkul W, Kutchan TM (2003) Aromatic and pyrone polyketides synthesized by a stilbene synthase from Rheum tataricum. Phytochemistry 62:313–323

    Article  PubMed  CAS  Google Scholar 

  • Schijlen EGWM, de Vos CHR, Jonker H, van den Broeck H, Molthoff J, van Tunen AJ, Martens S, Bovy A (2006) Pathway engineering for healthy phytochemicals leading to the production of novel flavonoids in tomato fruit. Plant Biotech J 4:433–444

    Article  CAS  Google Scholar 

  • Schijlen EGWM, de Vos CHR, Martens S, Jonker HH, Rosin FM, Molthoff JW, Tikunov YM, Angenent GC, van Tunen AJ, Bovy AG (2007) RNAi silencing of chalcone synthase, the first step in the flavonoid biosynthesis pathway, leads to parthenocarpic tomato fruits. Plant Physiol 144:1520–1530

    Article  PubMed  CAS  Google Scholar 

  • Schwekendiek A, Spring O, Heyerick A, Pickel B, Pitsch NT, Peschke F, de Keukeleire D, Weber G (2007) Constitutive expression of a grapevine stilbene synthase gene in transgenic hop (Humulus lupulus L.) yields resveratrol and its derivatives in substantial quantities. J Agric Food Chem 55:7002–7009

    Article  PubMed  CAS  Google Scholar 

  • Serazetdinova L, Oldach K, Lörz H (2005) Expression of transgenic stilbene synthases in wheat causes the accumulation of unknown stilbene derivatives with antifungal activity. J Plant Physiol 162:985–1002

    Article  PubMed  CAS  Google Scholar 

  • Shirley BW, Kubasek WL, Storz G, Bruggemann E, Koornneef M, Ausubel FM, Goodman HM (1995) Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J 8:659–671

    Article  PubMed  CAS  Google Scholar 

  • Stark-Lorenzen P, Nelke B, Hänbler G, Mühlbach HP, Thomzik JE (1997) Transfer of a grapevine stilbene synthase gene to rice (Oryza sativa L.). Plant Cell Rep 16:668–673

    Article  CAS  Google Scholar 

  • Tang W, Newton RJ, Weidner DA (2007) Genetic transformation and gene silencing mediated by multiple copies of a transgene in eastern white pine. J Exp Bot 58:545–554

    Article  PubMed  CAS  Google Scholar 

  • Thomma BPHJ, Eggermont K, Penninckx IAMA, Mauch-Mani B, Vogelsang R, Cammue BPA, Broekaert WF (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA 95:15107–15111

    Article  PubMed  CAS  Google Scholar 

  • Thomzik JE, Stenzel K, Stöcker R, Schreier PH, Hain R, Stahl DJ (1997) Synthesis of a grapevine phytoalexin in transgenic tomatoes (Lycopersicon esculentum Mill.) conditions resistance against Phytophthora infestans. Physiol Mol Plant Pathol 51:265–278

    Article  CAS  Google Scholar 

  • Van der Meer IM, Stam ME, Van Tunen AJ, Mol JNM, Stuitje AR (1992) Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility. Plant Cell 4:253–262

    Article  PubMed  Google Scholar 

  • Wang YC, Xu HL, Fu Q, Ma R, Xiang JZ (2011) Protective effect of resveratrol derived from Polygonum cuspidatum and its liposomal form on nigral cells in Parkinsonian rats. J Neurol Sci 304:29–34

    Article  PubMed  CAS  Google Scholar 

  • Wiese W, Vornam B, Krause E, Kindl H (1994) Structural organization and differential expression of three stilbene synthase genes located on a 13 kb grapevine DNA fragment. Plant Mol Biol 26:667–677

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Wang ZC, You WT, Zhang XH, Li S, Barish PA, Vernon MM, Du X, Li GW, Pan JC, Ogle WO (2010) Antidepressant-like effect of trans-resveratrol: involvement of serotonin and noradrenaline system. Euro Neuropsychopharm 20:405–413

    Article  CAS  Google Scholar 

  • Yang J, Kong X, Martins-Santos ME, Aleman G, Chaco E, Liu GE, Wu SY, Samols D, Hakaimi P, Chiang CM, Hanson RW (2009) The activation of Sirt1 by resveratrol represses transcription of the gene for the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) by deacetylating HNF4α. J Biol Chem 284:27042–27053

    Article  PubMed  CAS  Google Scholar 

  • Ylstra B, Touraev A, Benito Moreno RM, Stöger E, van Tunen AJ, Vicente O, Mol JNM, Heberle-Bors E (1992) Flavonols stimulate development, germination and tube growth of tobacco pollen. Plant Physiol 100:902–907

    Article  PubMed  CAS  Google Scholar 

  • Yu CK, Springob K, Schmidt J, Nicholson RL, Chu IK, Yip WK, Lo C (2005) A stilbene synthase gene (SbSTS1) is involved in host and nonhost defense responses in Sorghum. Plant Physiol 138:393–401

    Article  PubMed  CAS  Google Scholar 

  • Yu CK, Lam CN, Springob K, Schmidt J, Chu IK, Lo C (2006) Constitutive accumulation of cis-piceid in transgenic Arabidopsis overexpressing a Sorghum stilbene synthase gene. Plant Cell Physiol 47:1017–1021

    Article  PubMed  CAS  Google Scholar 

  • Zhu YJ, Agbayani R, Jackson MC, Tang CS, Moore PH (2004) Expression of the grapevine stilbene synthase gene VST1 in papaya provides increased resistance against diseases caused by Phytophthora palmivora. Planta 220:241–250

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Minhui Li (South China Agriculture University, China) for providing Colletotrichum higginsianum strain. We thank Dr. Yuchun Luo (University of Colorado, USA) for critical reading of the manuscript. This work was funded by grants from Guangdong Provincial Natural Science Foundation (10151001002000012) and Technologies Program of Guangdong Province Foundation (2010B060200009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujin Zhao.

Additional information

Communicated by J. R. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Zhuang, C., Sheng, S. et al. Overexpression of a resveratrol synthase gene (PcRS) from Polygonum cuspidatum in transgenic Arabidopsis causes the accumulation of trans-piceid with antifungal activity. Plant Cell Rep 30, 2027–2036 (2011). https://doi.org/10.1007/s00299-011-1110-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-011-1110-2

Keywords

Navigation