Skip to main content
Log in

High-level accumulation of recombinant miraculin protein in transgenic tomatoes expressing a synthetic miraculin gene with optimized codon usage terminated by the native miraculin terminator

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

In our previous study, a transgenic tomato line that expressed the MIR gene under control of the cauliflower mosaic virus 35S promoter and the nopaline synthase terminator (tNOS) produced the taste-modifying protein miraculin (MIR). However, the concentration of MIR in the tomatoes was lower than that in the MIR gene’s native miracle fruit. To increase MIR production, the native MIR terminator (tMIR) was used and a synthetic gene encoding MIR protein (sMIR) was designed to optimize its codon usage for tomato. Four different combinations of these genes and terminators (MIR-tNOS, MIR-tMIR, sMIR-tNOS and sMIR-tMIR) were constructed and used for transformation. The average MIR concentrations in MIR-tNOS, MIR-tMIR, sMIR-tNOS and sMIR-tMIR fruits were 131, 197, 128 and 287 μg/g fresh weight, respectively. The MIR concentrations using tMIR were higher than those using tNOS. The highest MIR accumulation was detected in sMIR-tMIR fruits. On the other hand, the MIR concentration was largely unaffected by sMIR-tNOS. The expression levels of both MIR and sMIR mRNAs terminated by tMIR tended to be higher than those terminated by tNOS. Read-through mRNA transcripts terminated by tNOS were much longer than those terminated by tMIR. These results suggest that tMIR enhances mRNA expression and permits the multiplier effect of optimized codon usage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

GUS:

β-Glucronidase

MIR:

Miraculin

sMIR:

Synthesized MIR

NOS:

Nopaline synthase

References

  • Batard Y, Hehn A, Nedelkina S, Schalk M, Pallett K, Schaller H, Werck-Reichhart D (2000) Increasing expression of P450 and P450-reductase proteins from monocots in heterologous systems. Arch Biochem Biophys 379:161–169. doi:10.1006/abbi.2000.1867

    Article  CAS  PubMed  Google Scholar 

  • Chiba Y, Ishikawa M, Kijima F, Tyson RH, Kim J, Yamamoto A, Nambara E, Leustek T, Wallsgrove RM, Naito S (1999) Evidence for autoregulation of cystathionine γ-synthase mRNA stability in Arabidopsis. Science 286:1371–1374. doi:10.1126/science.286.5443.1371

    Article  CAS  PubMed  Google Scholar 

  • Chincinska IA, Liesche J, Krugel U, Michalska J, Geigenberger P, Grimm B, Khun C (2008) Sucrose transporter StSUT4 from potato affects flowering, tuberization, and shade avoidance response. Plant Physiol 146:515–528. doi:10.1104/pp.107.112334

    Article  CAS  PubMed  Google Scholar 

  • Daniell H, Streatfield SJ, Wycoff K (2001) Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci 6:219–226. doi:10.1016/S1360-1385(01)01922-7

    Article  CAS  PubMed  Google Scholar 

  • Deblaere R, Bytebier B, De Greve H, Deboeck F, Schell J, van Montagu M, Leemans J (1985) Efficient octopine Ti plasmid derived vectors for Agrobacterium-mediated gene transfer in plants. Nucleic Acids Res 13:4777–4785

    Article  CAS  PubMed  Google Scholar 

  • Desai PN, Shrivastava N, Padh H (2010) Production of heterologous proteins in plants: Strategies for optimal expression. Biotechnol Adv 28:427–435. doi:10.1016/j.biotechadv.2010.01.005

    Article  CAS  PubMed  Google Scholar 

  • Giddings G, Allison G, Brooks D, Carter A (2000) Transgenic plants as factories for biopharmaceuticals. Nat Biotechnol 18:1151–1155. doi:10.1038/81132

    Article  CAS  PubMed  Google Scholar 

  • Gilmartin GM (2005) Eukaryotic mRNA 3′ processing: a common means to different ends. Genes Dev 19:2517–2521. doi:10.1101/gad.1378105

    Article  CAS  PubMed  Google Scholar 

  • Gustafsson C, Govindarajan S, Minshull J (2004) Codon bias and heterologous protein expression. Trends Biotechnol 22:346–353. doi:10.1016/j.tibtech.2004.04.006

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez RA, Maclntosh GC, Green PJ (1999) Current perspectives on mRNA stability in plants: multiple levels and mechanisms of control. Trend Plant Sci 4:429–438. doi:10.1016/S1360-1385(99)01484-3

    Article  Google Scholar 

  • Hackel A, Schauer N, Carrari F, Fernie AR, Grimm B, Kuhn C (2006) Sucrose transporter LeSUT1 and LeSUT2 inhibition affects tomato fruit development in different ways. Plant J 45:180–192. doi:10.1111/j.1365-313X.2005.02572.x

    Article  CAS  PubMed  Google Scholar 

  • Hirai T, Fukukawa G, Kakuta H, Fukuda N, Ezura H (2010) Production of recombinant miraculin using transgenic tomatoes in a closed cultivation system. J Agric Food Chem 58:6096–6101. doi:10.1021/jf100414v

    Article  CAS  PubMed  Google Scholar 

  • Ingelbrecht ILW, Herman LMF, Dekeyser RA, Van Montagu MC, Depicker AG (1989) Different 3′ end regions strongly influence the level of gene expression in plant cells. Plant Cell 1:671–680. doi:10.1105/tpc.1.7.671

    Article  CAS  PubMed  Google Scholar 

  • Ingelbrecht ILW, Breyne P, Vancompernolle K, Jacobs A, Van Montagu MC, Depicker AG (1991) Transcriptional interference in transgenic plants. Gene 109:239–243. doi:10.1016/0378-1119(91)90614-H

    Article  CAS  PubMed  Google Scholar 

  • Jackson RJ, Standart N (1990) Do the poly (A) tail and 3′ untranslated region control mRNA translation? Cell 62:15–24. doi:10.1016/0092-8674(90)90235-7

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RK, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  Google Scholar 

  • Kawabe A, Miyashita NT (2003) Patterns of codon usage bias in three dicot and four monocot plant species. Genes Genet Syst 78:343–352. doi:10.1266/ggs.78.343

    Article  CAS  PubMed  Google Scholar 

  • Kim YW, Kato K, Hirai T, Hiwasa-Tanase K, Ezura H (2010) Spatial and development profiling of miraculin accumulation in transgenic tomato fruits expressing the miraculin gene constitutively. J Agric Food Chem 58:282–286. doi:10.1021/jf9030663

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Xue Q (2005) Comparative studies on codon usage pattern of chloroplasts and their host nuclear genes in four plant species. J Genet 84:55–62

    Article  CAS  PubMed  Google Scholar 

  • Mason HS, Warzecha H, Mor T, Arntzen CJ (2002) Edible plant vaccines: application for prophylactic and molecular medicine. Trends Mol Med 8:324–329. doi:10.1016/S1471-4914(02)02360-2

    Article  CAS  PubMed  Google Scholar 

  • Matsuura H, Shinmyo A, Kato K (2008) Preferential translation mediated by Hsp81–3 5′-UTR during heat shock involves ribosome entry at the 5′-end rather than an internal site in Arabidopsis suspention cells. J Biosci Bioeng 105:39–47

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Murray EE, Lotzer J, Eberle M (1989) Codon usage in plant genes. Nucleic Acids Res 17:477–498

    Article  CAS  PubMed  Google Scholar 

  • Nagaya S, Kawamura K, Shinmyo A, Kato K (2010) The HSP terminator of Arabidopsis thaliana increases gene expression in plant cells. Plant Cell Physiol 51:328–332. doi:10.1093/pcp/pcp188

    Article  CAS  PubMed  Google Scholar 

  • Peng RH, Yao QH, Xiong AS, Cheng ZM, Li Y (2006) Codon-modifications and an endoplasmic reticulum-targeting sequence additively enhance expression of an Aspergillus phytase gene in transgenic canola. Plant Cell Rep 25:124–132. doi:10.1007/s00299-005-0036-y

    Article  CAS  PubMed  Google Scholar 

  • Perlak FJ, Fuchs RL, Dean DA, McPherson SL, Fischhoff DA (1991) Modification of the coding sequence enhances plant expression of insect control protein genes. Proc Natl Acad Sci USA 88:3324–3328

    Article  CAS  PubMed  Google Scholar 

  • Proudfoot N (2004) New perspectives on connecting messenger RNA 3′ end formation to transcription. Curr Opin Cell Biol 16:272–278. doi:10.1016/j.ceb.2004.03.007

    Article  CAS  PubMed  Google Scholar 

  • Rang A, Linke B, Jansen B (2005) Detection of RNA variants transcribed from the transgene in Roundup Ready soybean. Eur Food Res Technol 220:438–443. doi:10.1007/s00217-004-1064-5

    Article  CAS  Google Scholar 

  • Rogers SO, Bendich AJ (1985) Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol 5:69–76. doi:10.1007/BF00020088

    Article  CAS  Google Scholar 

  • Rothnie HM, Reid J, Hohn T (1994) The contribution of AAUAAA and the upstream element UUUGUA to the efficiency of mRNA 3′-end formation in plants. EMBO J 13:2200–2210

    CAS  PubMed  Google Scholar 

  • Rouwendal GJ, Mendes O, Wolbert EJ, de Boer AD (1997) Enhanced expression in tobacco of the gene encoding green fluorescent protein by modification of its codon usage. Plant Mol Biol 33:989–999. doi:10.1023/A:1005740823703

    Article  CAS  PubMed  Google Scholar 

  • Shen WJ, Forde BG (1989) Efficient transformation of Agrobacterium spp. by high voltage electroporation. Nucleic Acids Res 17:8385

    Article  CAS  PubMed  Google Scholar 

  • Sugaya T, Yano M, Sun HJ, Hirai T, Ezura H (2008) Transgenic strawberry expressing a taste-modifying protein, miraculin. Plant Biotechnol 25:329–333

    CAS  Google Scholar 

  • Sun HJ, Cui ML, Ma B, Ezura H (2006a) Functional expression of the taste-modifying protein, miraculin, in transgenic lettuce. FEBS Lett 580:620–626. doi:10.1016/j.febslet.2005.12.080

    Article  CAS  PubMed  Google Scholar 

  • Sun HJ, Uchii S, Watanabe S, Ezura H (2006b) A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics. Plant Cell Physiol 47:426–431. doi:10.1093/pcp/pci251

    Article  CAS  PubMed  Google Scholar 

  • Sun HJ, Kataoka H, Yano M, Ezura H (2007) Genetically stable expression of functional miraculin, a new type of alternative sweetener, in transgenic tomato plants. Plant Biotechnol J 5:768–777. doi:10.1111/j.1467-7652.2007.00283.x

    Article  CAS  PubMed  Google Scholar 

  • Suzuki A, Shirata Y, Ishida H, Chiba Y, Onouchi H, Naito S (2001) The first exon coding region of cystathionine γ-synthase gene is necessary and sufficient for downregulation of its own mRNA Accumulation in transgenic Arabidopsis thaliana. Plant Cell Physiol 42:1174–1180

    Article  CAS  PubMed  Google Scholar 

  • Theerasilp S, Kurihara Y (1988) Complete purification and characterization of the taste-modifying protein, miraculin, from miracle fruit. J Biol Chem 263:11536–11539

    CAS  PubMed  Google Scholar 

  • Twyman RM, Stoger E, Schillberg S, Christou P, Fischer R (2003) Molecular farming in plants: host systems and expression technology. Trends Biotechnol 21:570–578. doi:10.1016/j.tibtech.2003.10.002

    Article  CAS  PubMed  Google Scholar 

  • Windels P, Taverniers I, Depicker A, Van Bockstaele E, De Loose M (2001) Characterisation of the Roundup Ready soybean insert. Eur Food Res Technol 213:107–112

    Article  CAS  Google Scholar 

  • Xue GP, Patel M, Johnson JS, Smyth DJ, Vickers CE (2003) Selectable marker-free transgenic barley producing a high level of cellulose (1, 4-β-glucanase) in developing grains. Plant Cell Rep 21:1088–1094. doi:10.1007/s00299-003-0627-4

    Article  CAS  PubMed  Google Scholar 

  • Yano M, Hirai T, Kato K, Hiwasa-Tanase K, Fukuda N, Ezura H (2010) Tomato is a suitable material for producing recombinant miraculin protein in genetically stable manner. Plant Sci 178:469–473. doi:10.1016/j.plantsci.2010.02.016

    Article  CAS  Google Scholar 

  • Zarudnaya MI, Kolomiets M, Potyahaylo AL, Hovorun DM (2003) Downstream elements of mammalian pre-mRNA polyadenylation signals: primary, secondary and higher-order structures. Nucleic Acids Res 31:1375–1386

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank members of the Ezura laboratory for helpful discussions. We thank Sun HJ, Uchi S and Yano M for cloning of the miraculin terminator region. This study was supported by the project “Development of Fundamental Technologies for the Production of High-value Materials Using Transgenic Plants,” by the Ministry of Economy, Trade, and Industry of Japan to H.E. Micro-Tom seeds (TOMJPF00001) were provided by the Gene Research Center, University of Tsukuba, through the National BioResource Project (NBRP) of the MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Ezura.

Additional information

Communicated by K. Toriyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiwasa-Tanase, K., Nyarubona, M., Hirai, T. et al. High-level accumulation of recombinant miraculin protein in transgenic tomatoes expressing a synthetic miraculin gene with optimized codon usage terminated by the native miraculin terminator. Plant Cell Rep 30, 113–124 (2011). https://doi.org/10.1007/s00299-010-0949-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-010-0949-y

Keywords

Navigation