Skip to main content

Advertisement

Log in

High-level expression of human interferon alpha-2b in transgenic carrot (Daucus carota L.) plants

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

In this study, we report the obtaining of carrot plants expressing human interferon alpha-2b via Agrobacterium-mediated transformation using two vector constructs containing the sequence coding for interferon gene fused with Nicotiana plumbagenifolia calreticulin apoplast targeting signal driven by 35S CaMV promoter and root-specific Mll promoter. The human interferon alpha-2b gene was correctly translated in carrot plants according to Western blot analysis. The recombinant protein exhibited antiviral activity in vitro by inhibition of vesicular stomatitis virus replication in established piglet testicular cells. The results demonstrated the higher activity of interferon accumulated in carrot plants for young leaves (up to 50.7 × 103 IU/g FW) compared to the mature ones probably due to the degradation-susceptible nature of this protein. The taproot-expressing system could have also provided the sufficient protein amounts (up to 16.5 × 103 IU/g FW) and could possibly be used for generating interferon alpha-2b protein in planta for preventing and curing infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aliahmadi A, Rahmani N, Abdollahi M (2006) Plant-derived human vaccines: an overview. Int J Pharmacol 2(3):268–279. doi:2006.268.279

    Article  CAS  Google Scholar 

  • Arazi T, Slutsky SG et al (2001) Engineering zucchini yellow mosaic potyvirus as a non-pathogenic vector for expression of heterologous proteins in cucurbits. J Biotechnol 87(1):67–82

    Article  CAS  PubMed  Google Scholar 

  • Ariyasu T, Tanaka T et al (2005) Effects of interferon-alpha subtypes on the Th1/Th2 balance in peripheral blood mononuclear cells from patients with hepatitis virus infection-associated liver disorders. In Vitro Cell Dev Biol Anim 41:50–56. doi:10.1290/0501008.1

    Article  CAS  PubMed  Google Scholar 

  • Arlen P, Falconer R (2007) Field production and functional evaluation of chloroplast-derived interferon-2b. Plant Biotechnol J 5:511–525. doi:10.1111/j.1467-7652.2007.00258.x

    Article  CAS  PubMed  Google Scholar 

  • Borisjuk N et al (1998) Calreticulin expression in plant cells: development regulation, tissue specificity and intracellular distribution. Planta 206:504–514

    Article  CAS  PubMed  Google Scholar 

  • Bouche FB, Marquet-Blouin E et al (2003) Neutralising immunogenicity of a polyepitope antigen expressed in a transgenic food plant: a novel antigen to protect against measles. Vaccine 21(17–18):2065–2072. doi:10.1016/S0264-410X(02)00747-8

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  • Capone I, Span L et al (1989) Induction and growth-properties of carrot roots with different complements of Agrobacterium rhizogenes T-DNA. Plant Mol Biol Rep 13:43–52

    Article  CAS  Google Scholar 

  • Chen WP, Punja ZK (2002) Transgenic herbicide- and disease-tolerant carrot (Daucus carota L.) plants obtained through Agrobacterium-mediated transformation. Plant Cell Rep 20:929–935. doi:10.1007/s00299-001-0419-7

    Article  CAS  Google Scholar 

  • Daniell H, Streatfield S, Wycoff K (2001) Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci 6(5):219–226

    Article  CAS  PubMed  Google Scholar 

  • Deineko E, Shmykova N et al (2004) Creation of transgenic tobacco and carrot with human gene interleukin-18. In: Proceedings of the 3rd international science conference meetings on biotechnology in plant cultivation, animal husbandry and veterinary, pp 130–131

  • Deineko E, Zagorskaya A et al (2009) Analysis of hepatitis B virus M-antigen production of in transgenic carrot plant leaves. Dokl AS 425(3):400–403

    Google Scholar 

  • De Zoeten GA et al (1989) The expression, localization and effect of a human interferon in plants. Virology 172(1):213–222. doi:10.1016/0042-6822(89)90123-2

    Article  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Draper J, Scott R, Armitage Ph (1991) Plant genetic transformation and gene expression. A laboratory manual. Mir, Moscow

    Google Scholar 

  • Edelbaum O et al (1992) Expression of active human interferon-beta in transgenic plants. J Interferon Res 12:449–453

    CAS  PubMed  Google Scholar 

  • Furtado A, Henry RJ, Takaiwa F (2008) Comparison of promoters in transgenic rice. Plant Biotechnol J 6:679–693

    Article  CAS  PubMed  Google Scholar 

  • Gilbert MO, Zhang YY (1996) Introduction and expression of Chinese encoding genes in carrot following Agrobacterium-mediated transformation. In Vitro Cell Dev Biol Plant 32:171–178

    Article  CAS  Google Scholar 

  • Gils M, Kandzia R, Marillonnet S, Klimyuk V, Gleba Yu (2005) High-yield production of authentic human growth hormone using a plant virus-based expression system. J Plant Biotechnol 3(6):613–620. doi:10.1111/j.1467-7652.2005.00154.x

    Article  CAS  Google Scholar 

  • Guivarc’h A, Caissard J-C et al (1993) Localization of target cells and improvement of Agrobacterium-mediated transformation efficiency by direct acetosyringone pretreatment of carrot root discs. Protoplasma 174:10–18

    Article  Google Scholar 

  • Imani J, Berting A et al (2002) The integration of a major hepatitis B virus gene into cell-cycle synchronized carrot cell suspension cultures and its expression in regenerated carrot plants. Plant Cell Tissue Organ Cult 71:157–164. doi:10.1023/A:1019903216459

    Article  CAS  Google Scholar 

  • Jain E, Kumar A (2008) Upstream processes in antibody production: evaluation of critical parameters. Biotechnol Adv 26:46–72. doi:10.1016/jbiotechadv.2007.09.004

    Article  CAS  PubMed  Google Scholar 

  • Jayaraj J, Punja ZK (2007) Combined expression of chitinases and lipid transfer protein genes in transgenic carrot plants enhances resistance to foliar fungal pathogens. Plant Cell Rep 26:1539–1546. doi:10/1007/s00299-007-0368-x

    Article  CAS  PubMed  Google Scholar 

  • Jayaraj J, Devlin R, Punja Z (2008) Metabolic engineering of novel ketocarotenoid production in carrot plants. Transgenic Res 17(4):489–501

    Article  CAS  PubMed  Google Scholar 

  • Joung YH, Kamo K (2006) Expression of a polyubiquitin promoter isolated from Gladiolus. Plant Cell Rep 25:1081–1088

    Article  CAS  PubMed  Google Scholar 

  • Kamo K, Blowers A, Smith F, Van Eck J, Lawson R (1995) Stable transformation of Gladiolus using suspension cells and callus. J Am Soc Hortic Sci 120:347–352

    Google Scholar 

  • Karasev A (2009) Plant-produced microbial vaccines. Current topics in microbiology and immunology, vol 332. Springer, Berlin

    Book  Google Scholar 

  • Leelavathi S, Reddy VS (2003) Chloroplast expression of His-tagged GUS-fusions: a general strategy to overproduce and purify foreign proteins using transplastomic plants as bioreactors. Mol Breed 11:49–58

    Article  CAS  Google Scholar 

  • Leite A, Kemper E (2000) Expression of correctly processed human growth hormone in seeds of transgenic tobacco plants. Mol Breed 6:47–53

    Article  CAS  Google Scholar 

  • Li J, Chen M, Liu XW et al (2007) Transient expression of an active human interferon-beta in lettuce. Sci Hortic 112(3):258–265

    Article  CAS  Google Scholar 

  • Li S, Zhao D, Wu Y, Li Y (2008) Transient expression of chicken alpha interferon gene in lettuce. J Zhejiang Univ Sci B 9(5):351–355. doi:10/1631/jzus.B0710596

    Article  PubMed  Google Scholar 

  • Lipp J, Brown T (1993) Enhanced transformation of tomato co-cultivated with Agrobacterium tumefaciens C58 C1 Rif:pGSFR1161 in the presence of acetosyringone. Plant Cell Rep 12:422–425

    Google Scholar 

  • Marquet-Blouin E, Bouche F, Steinmetz A, Muller C (2003) Neutralizing immunogenicity of transgenic carrot (Daucus carota L.)-derived measles virus hemagglutinin. Plant Mol Biol 51:459–469

    Article  CAS  PubMed  Google Scholar 

  • Medvedev AE, Fuchs BB, Rakhmilevich AL (1990) A study of the action of immunosuppressive factors from tumor cells on lymphocytes and macrophages in vitro and on the graft-versus-host reaction in mice. Biomed Sci 3(1):261–266

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ohya K, Matsumura T, Ohashi K, Onuma M, Sugimoto C (2001) Expression of two subtypes of human INF-alpha in transgenic potato plants. J Interferon Cytokine Res 21:595–602

    Article  CAS  PubMed  Google Scholar 

  • Oltmanns H, Kloos DU et al (2006) Taproot promoters cause tissue specific gene expression within the storage root of sugar beet. Planta 224:485–495. doi:10.1007/s00425-006-0230-3

    Article  CAS  PubMed  Google Scholar 

  • Peng R-H, Yao Q-H, Xiong A-S, Cheng Z-M, Li Y (2005) Codon-modifications and an endoplasmic reticulum-targeting sequence additively enhance expression of an Aspergillus phytase gene in transgenic canola. Plant Cell Rep 25:124–132. doi:10.1007/s00299-005-0036-y

    Article  PubMed  Google Scholar 

  • Porceddu A et al (1999) Transgenic plants expressing human glutamic acid decarboxylase (GAD65) a major autoantigen in insulin-dependent diabetes mellitus. Mol Breed 5(6):553–560

    Article  CAS  Google Scholar 

  • Punja ZK (2005) Transgenic carrots expressing a thaumatin-like protein display enhanced resistance to several fungal pathogens. Can J Plant Pathol 27:291–296

    Article  CAS  Google Scholar 

  • Punja ZK, Zhang Y-Y (1993) Plant chitinases and their roles in resistance to fungal diseases. J Nematol 25:526–540

    CAS  PubMed  Google Scholar 

  • Punja ZK, Jayaraj J, Wally O (2007) Carrot. In: Pua EC, Davey MR (eds) Biotechnology in agriculture and forestry. Transgenic crops IV, vol 59. Springer, Berlin, pp 277–291

    Google Scholar 

  • Rosales-Mendoza S, Soria-Guerra R et al (2007) Expression of Escherichia coli heat-labile enterotoxin b subunit (LTB) in carrot (Daucus carota L.). Plant Cell Rep 26:969–976. doi:10.1007/s00299-007-0310-2

    Article  CAS  PubMed  Google Scholar 

  • Rubinstein S, Familletti Ph, Petska S (1981) Convenient assay for interferons. J Virol 37(5):755–758

    CAS  PubMed  Google Scholar 

  • Samac DA, Shah DM (1991) Developmental and pathogen-induced activation of the Arabidopsis acidic chitinase promoter. Plant Cell 3:1063–1072

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, New York, p 1659. ISBN 0–87969–309–6

  • Sawahel WA (2002) The production of transgenic potato plants expressing human alpha-interferon using lipofectin-mediated transformation. Cell Mol Biol Lett 7(1):19–29

    CAS  PubMed  Google Scholar 

  • Sciutto E, Fragoso G, Manoutcharian K et al (2002) New approaches to improve a peptide vaccine against porcine Taenia solium cysticercosis. Arch Med Res 33:371–378

    Article  CAS  PubMed  Google Scholar 

  • Scott RJ, Draper JJ (1987) Transformation of carrot tissues derived from proembryogenic suspension cells: a useful model system for gene expression studies in plants. Plant Mol Biol 8:265–274

    Article  CAS  Google Scholar 

  • Sen GC (2001) Viruses and interferons. Annu Rev Microbiol 55:255–281. doi:10.1146/annurev.micro.55.1.255

    Article  CAS  PubMed  Google Scholar 

  • Sijmons P, Dekker B et al (1990) Production of correctly processed human serum albumin in transgenic plants. Biotechnology 8:217–221

    Article  CAS  PubMed  Google Scholar 

  • Stephanov OV (2001) Pre-clinical studies of medicine. State Pharmacological Centre, Kyiv, pp 390–392

    Google Scholar 

  • Takaichi M, Oeda K (2000) Transgenic carrots with enhanced resistance against two major pathogens, Erysiphe heraclei and Alternaria dauci. Plant Sci 153:135–144

    Article  CAS  PubMed  Google Scholar 

  • Thomas JC, Guiltinan MJ et al (1989) Carrot (Daucus carota) hypocotyls transformation using Agrobacterium tumefaciens. Plant Cell Rep 8:354–357

    Article  CAS  Google Scholar 

  • Wang LJ, Ni DA, Chen YN, Lee ZM (2001) The expression of Mycobacterium tuberculosis MPT64 protein in transgenic carrots. Acta Bot Sin 43:132–137

    CAS  Google Scholar 

  • Wurtele NS, Bulka KA (1989) A simple effective method for the Agrobacterium-mediated transformation of carrot callus cells. Plant Sci 61:253–262

    Article  CAS  Google Scholar 

  • Zhu Z, Hughes KW, Huang L et al (1994) Expression of human α-interferon cDNA in transgenic rice plants. PCTOC 36(2):197–204

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Luchakivskaya.

Additional information

Communicated by H. Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luchakivskaya, Y., Kishchenko, O., Gerasymenko, I. et al. High-level expression of human interferon alpha-2b in transgenic carrot (Daucus carota L.) plants. Plant Cell Rep 30, 407–415 (2011). https://doi.org/10.1007/s00299-010-0942-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-010-0942-5

Keywords

Navigation