Skip to main content
Log in

Identification of QTL underlying somatic embryogenesis capacity of immature embryos in soybean (Glycine max (L.) Merr.)

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

High embryogenesis capacity of soybean (Glycine max (L.) Merr.) in vitro possessed potential for effective genetic engineering and tissue culture. The objects of this study were to identify quantitative trait loci (QTL) underlying embryogenesis traits and to identify genotypes with higher somatic embryogenesis capacity. A mapping population, consisting of 126 F5:6 recombinant inbred lines, was advanced by single-seed-descent from cross between Peking (higher primary and secondary embryogenesis) and Keburi (lower primary and secondary embryogenesis). This population was evaluated for primary embryogenesis capacity from immature embryo cultures by measuring the frequency of somatic embryogenesis (FSE), the somatic embryo number per explant (EPE) and the efficiency of somatic embryogenesis (ESE). A total of 89 simple sequence repeat markers were used to construct a genetic linkage map. Six QTL were associated with somatic embryogenesis. Two QTL for FSE were found, QFSE-1 (Satt307) and QFSE-2 (Satt286), and both were located on linkage group C2 that explained 45.21 and 25.97% of the phenotypic variation, respectively. Four QTL for EPE (QEPE-1 on MLG H, QEPE-2 on MLG G and QEPE-3 on MLG G) were found, which explained 7.11, 7.56 and 6.12% of phenotypic variation, respectively. One QTL for ESE, QESE-1 (Satt427), was found on linkage group G that explained 6.99% of the phenotypic variation. QEPE-2 and QESE-1 were located in the similar region of MLG G. These QTL provide potential for marker assistant selection of genotypes with higher embryogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Armstrong CL, Romero-Severson J, Hodges TK (1992) Improved tissue culture response of an elite maize inbred through backcross breeding and identification of chromosomal regions important for regeneration by RFLP analysis. Theor Appl Genet 84:755–762

    Article  Google Scholar 

  • Bailey MA, Boerma HR, Parrot DW (1993) Genotype effects on proliferative embryogenesis and plant regeneration of soybean. In Vitro Cell Dev Biol-Plant 29P:102–108

    Google Scholar 

  • Barwale UB, Kerns HR, Widholm JM (1986) Plant regeneration from callus cultures of several soybean genotypes via embryogenesis and organogenesis. Planta 167:473–481

    Article  CAS  Google Scholar 

  • Beaumont VH, Rocheford TR, Widholm JM (1995) Mapping the anther culture response gene in maize (Zea mays L.). Genome 38:968–975

    Article  CAS  PubMed  Google Scholar 

  • Ben Amer IM, Korzun V, Worland AJ, Brner A (1997) Genetic mapping of QTL controlling tissue-culture response on chromosome 2B of wheat (Triticum aestivum L.) in relation to major genes and RFLP markers. Theor Appl Genet 94:1047–1052

    Article  CAS  Google Scholar 

  • Bentolila S, Hardy T, Guitton C, Freyssinet G (1992) Comparative genetic analyses of F2 plants and anther culture derived plants of maize. Genome 35:575–582

    Google Scholar 

  • Blum A, Klueva N, Nguven HT (2001) Wheat cellular thermo tolerance is related to yield under heat stress. Euphytica 117:117–123

    Article  Google Scholar 

  • Chen X-W, Cistué L, Muñoz-Amatriaín M, Sanz M, Romagosa I, Castillo AM, Vallés MP (2007) Genetic markers for doubled haploid response in barley. Euphytica 158:287–294

    Article  CAS  Google Scholar 

  • Cregan PB, Jarvik T, Bush AL, Shoemaker RC, Lark KG, Kahler AL, VanToai TT, Lohnes DG, Chung J, Specht JE (1999) An integrated genetic linkage map of the soybean genome. Crop Sci 39:1464–1490

    CAS  Google Scholar 

  • Flores BE, Gentzbittel L, Mokrani L, Alibert G, Sarrafi A (2000) Genetic control of early events in protoplast division and regeneration pathways in sunflower. Theor Appl Genet 101:606–612

    Article  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Guo WW, Cheng YJ, Chen CL, Deng XX (2006) Molecular analysis revealed autotetraploid, diploid and tetraploid hybrid plants regenerated from an interspecific somatic fusion in Citrus. Sci Hortic 108(2):162–166

    Article  CAS  Google Scholar 

  • Hodges TK, Kamo KK, Imbrie CW, Becwar MR (1986) Genotype specificity of somatic embryogenesis and regeneration in maize. Bio/Technology 4:219–223

    Article  Google Scholar 

  • Komatsuda T, Ohyama K (1988) Genotypes of high competence for somatic embryogenesis and plant regeneration in soybean Glycine max. Theor Appl Genet 75(5):695–700

    Article  Google Scholar 

  • Komatsuda T, Kaneko K, Oka S (1991) Genotype × sucrose interactions for somatic embryogenesis in soybean. Crop Sci 31:333–337

    CAS  Google Scholar 

  • Komatsuda T, Li WB, Oka S (1992) Maturation and germination of somatic embryos affected by sucrose and plant growth regulators in soybeans Glycine gracilis Skvortz and Glycine max (L.) Merr. Plant Cell Tiss Org Cult 28:103–113

    Article  CAS  Google Scholar 

  • Komatsuda T, Taguchi-Shiobara F, Oka S, Takaiwa F, Annaka T, Jacobsen HJ (1995) Transfer and mapping of the shoot differentiation locus Shd1 in barley chromosome 2. Genome 38:1009–1014

    Article  CAS  PubMed  Google Scholar 

  • Koorneef M, Bade J, Hanhart C, Horsman K, Schel J, Soppe W, Verkerk R, Zabel P (1993) Characterization and mapping of a gene controlling shoot regeneration in tomato. Plant J 3:131–141

    Article  Google Scholar 

  • Kwon YS, Kim KM, Eun MY, Sohn JK (2002) QTL mapping and associated marker selection for the efficacy of green plant regeneration in anther culture of rice. Plant Breed 121(1):10–16

    Article  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Baarlow A, Daly MJ, Lincoln SE, Newburg L (1987) MapMaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Lazar MD, Bainziger PS, Schaeffer GW (1984) Combining abilities and heritability of callus formation and plantlet regeneration in wheat (Triticum aestivum L.) anther cultures. Theor Appl Genet 68:131–134

    Article  Google Scholar 

  • Lazzeri PA, Hildebrand DF, Collins GB (1985) A procedure for plant regeneration from immature cotyledon tissue of soybean. Plant Mol Bio Rep 3:160–167

    Article  Google Scholar 

  • Lazzeri PA, Hildebrand DF, Collins GB (1987a) Soybean somatic embryogenesis: effects of hormones and culture manipulations. Plant Cell Tiss Org Cult 10:197–208

    Article  CAS  Google Scholar 

  • Lazzeri PA, Hildebrand DF, Collins GB (1987b) Soybean somatic embryogenesis: effects of nutritional, physical and chemical factors. Plant Cell Tiss Org Cult 10(3):209–220

    Article  CAS  Google Scholar 

  • Lazzeri PA, Hildebrand DF, Sunega J, Williams EG, Collins GB (1988) Soybean somatic embryogenesis: interactions between sucrose and auxin. Plant Cell Rep 7(7):517–520

    Article  CAS  Google Scholar 

  • Li W, Sun G, Liu J, Masilamany P, Taylor JH, Yan W, Kasha KJ, Paul KP (2004) Inheritance of plant regeneration from maize (Zea mays L.) shoot meristem cultures derived from germinated seeds and the identification of associated RAPD and SSR markers. Theor Appl Genet 108:681–687

    Article  CAS  PubMed  Google Scholar 

  • Lippmann B, Lippmann G (1984) Induction of somatic embryos in cotyledonary tissue of soybean, Glycine max (L.) Merr. Plant Cell Rep 3(6):215–218

    Article  CAS  Google Scholar 

  • Mano Y, Takahashi H, Sato K, Takeda K (1996) Mapping genes for callus growth and shoot regeneration in barley (Hordeum vulgare L.). Breed Sci 46:137–142

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Parrott WA, Williams EG, Hildebrand DF, Collins GB (1989) Effect of genotype on somatic embryogenesis from immature cotyledons of soybean. Plant Cell Tiss Org Cult 16(1):15–21

    Article  Google Scholar 

  • Primomo VS, Poysa V, Ablett GR, Jackson CJ, Gijzen M, Rajcan I (2005) Mapping QTL for individual and total isoflavone content in soybean seeds. Crop Sci 45:2454–2464

    Article  CAS  Google Scholar 

  • Ranch JP, Oglesby L, Zielinski AC, Horsch RB (1985) Plant regeneration from embryo-derived tissue cultures of soybeans. In Vitro Cell Dev Biol-Plant 21(11):653–658

    Article  Google Scholar 

  • Rodrigues LR, Forte BCD, Oliveira JMS, Mariath JEA, Bodanese-Zanettini MH (2004) Effects of light conditions and 2, 4-D concentration in soybean anther culture. Plant Growth Regul 44:125–131

    Article  CAS  Google Scholar 

  • Santarem ER, Pelissier B, Finer JJ (1997) Effect of explant orientation, pH, solidifying agent and wounding on initiation of soybean somatic embryos. In Vitro Cell Dev Biol-Plant 33(1):13–19

    Article  CAS  Google Scholar 

  • Schiantarelli E, Dela Pea A, Candela M (2001) Use of recombinant inbred lines (RILs) to identify, locate and map major genes and quantitative trait loci involved with in vitro regeneration ability in Arabidopsis thaliana. Theor Appl Genet 102:335–341

    Article  CAS  Google Scholar 

  • Schmidt MA, LaFayette PR, Artelt BA, Parrott WA (2008) A comparison of strategies for transformation with multiple genes via microprojectile-mediated bombardment. In Vitro Cell Dev Biol Plant 44:162–168

    CAS  Google Scholar 

  • Shultz JL, Kazi S, Afzal JA, Bashir R, Lightfoot DA (2007) The development of BAC-end sequence-based microsatellite markers and placement in the physical and genetic maps of soybean. Theor Appl Genet 114:1081–1090

    Article  CAS  PubMed  Google Scholar 

  • Singh RJ, Klein TM, Mauvais CJ, Knowlton S, Hymowitz T, Kostow CM (1998) Cytological characterization of transgenic soybean. Theor Appl Genet 96:319–324

    Article  Google Scholar 

  • Song QJ, Marek LF, Shoemaker RC, Lark KG, Concibido VC, Delannay X, Specht JE, Cregan PB (2004) A new integrated genetic linkage map of the soybean. Theor Appl Genet 109:122–128

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto K, Takeoka Y (1998) Genetic analysis of plant regeneration ability in anther culture of rice (Oryza sativa L.). Breed Sci 48:115–121

    Google Scholar 

  • Taguchi-Shiobara F, Lin SY, Tanno K, Komatsuda T, Yano M, Sasaki T, Oka S (1997) Mapping quantitative trait loci associated with regeneration ability of seed callus in rice (Oryza sativa L.) Theor Appl Genet 95:828–833

    Google Scholar 

  • Trigiano RN, Caetano-Anolles G (1998) Laboratory exercises on DNA amplification fingerprinting for evaluating the molecular diversity of horticultural species. Hort Technol 8:413–423

    Google Scholar 

  • Wan Y, Rocheford TR, Wildholm JM (1992) RFLP analysis to identify putative chromosomal regions involved in the anther culture response and callus formation of maize. Theor Appl Genet 85:360–365

    Article  CAS  Google Scholar 

  • Willman MR, Schroll SM, Hodges TK (1989) Inheritance of somatic embryogenesis and plantlet regeneration from primary (Type I) callus in maize. In Vitro Plant Cell Dev Biol 25:95–100

    Article  Google Scholar 

  • Yan W (2001) GGE biplot-a windows application for graphical analysis of multi-environment trial data and other types of two way data. Agron J 93:1111–1117

    Article  Google Scholar 

  • Young ND (1996) QTL mapping and quantitative disease resistance in plants. Annu Rev Phytopathol 34:479–501

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Lee J, Singh R, Xu SS, Cregan PB, Hymowitz T (2003) Assignment of molecular linkage groups to the soybean chromosomes by primary trisomics. Theor Appl Genet 107:745–750

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was conducted in the Key Laboratory of Soybean Biology of Chinese Education Ministry and financially supported by National 863 Projects (Contract Nos. 2006AA10Z1F1 and 2006AA100104-4), National Nature Science Foundation projects (30671318, 30971810) and National Plant Genetic Engineering Projects (2009ZX08004-002B, 2009ZX08009-0898).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Li.

Additional information

Communicated by H. Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, X., Han, Y., Teng, W. et al. Identification of QTL underlying somatic embryogenesis capacity of immature embryos in soybean (Glycine max (L.) Merr.). Plant Cell Rep 29, 125–131 (2010). https://doi.org/10.1007/s00299-009-0804-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-009-0804-1

Keywords

Navigation