Skip to main content
Log in

Production of recombinant single chain antibodies (scFv) in vegetatively reproductive Kalanchoe pinnata by in planta transformation

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

We developed an asexual reproductive plant, Kalanchoe pinnata, as a new bioreactor for plant-based molecular farming using a newly developed transformation method. Leaf crenate margins were pin-pricked to infect the plant with the Agrobacterium strain LBA4404 and vacuum infiltration was also applied to introduce the target gene into the plants. Subsequently, the young mother leaf produced new clones at the leaf crenate margins without the need for time- and labor-consuming tissue culture procedures. The average transformation rates were approximately 77 and 84% for pin-prickling and vacuum-infiltration methods, respectively. To functionally characterize an introduced target protein, a nucleic acid hydrolyzing recombinant 3D8 scFv was selected and the plant based 3D8 scFv proteins were purified and analyzed. Based on abzyme analysis, the purified protein expressed with this system had catalytic activity and exhibited all of properties of the protein produced in an E. coli system. This result suggested that vegetatively reproductive K. pinnata can be a novel and potent bioreactor for bio-pharmaceutical proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aida R, Shibata M (1996) Transformation of Kalanchoe blossfeldiana mediated by Agrobacterium tumefaciens and transgene silencing. Plant Sci 121:175–185

    Article  CAS  Google Scholar 

  • Bechtold N, Pelletier G (1998) In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol Biol 82:259–266

    PubMed  CAS  Google Scholar 

  • Birch RG (1997) Plant transformation: problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol 48:297–326

    Article  PubMed  CAS  Google Scholar 

  • Desai UA, Sur G, Daunert S, Babbitt R, Li Q (2002) Expression and affinity purification of recombinant proteins from plants. Protein Expr Purif 25:195–202

    Article  PubMed  CAS  Google Scholar 

  • Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19:1349

    Article  PubMed  CAS  Google Scholar 

  • Engvall E, Perlmann P (1971) Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry 8:871

    Article  PubMed  CAS  Google Scholar 

  • Fischer R, Stoger E, Schillberg S, Christou P, Twyman RM (2004) Plant-based production of biopharmaceuticals. Curr Opin Plant Biol 7:152–158

    Article  PubMed  CAS  Google Scholar 

  • Garces HMP, Champagne CEM, Townsley BT, Park S, Malho R, Pedroso MC, Harada JJ, Sinha NR (2007) Evolution of asexual reproduction in leaves of the genus Kalanchoe. Proc Natl Acad Sci 104:15578–15583

    Article  PubMed  CAS  Google Scholar 

  • Gehrig HH, Winter K, Cushman J, Borland A, Taybi T (2000) An improved RNA isolation method for succulent plant species rich in polyphenols and polysaccharides. Plant Mol Biol Rep 18:369–376

    Article  CAS  Google Scholar 

  • Hafke J, Neff R, Hiitt M, Liittge U, Thiel G (2001) Day-to-night variations of cytoplasmic pH in a crassulacean acid metabolism plant. Protoplasma 216:164–170

    Article  PubMed  CAS  Google Scholar 

  • Hansen G, Wright MS (1999) Recent advances in the transformation of plants. Trends Plant Sci 4:226–231

    Article  PubMed  Google Scholar 

  • He R-F, Wang Y, Shi Z, Ren X, Zhu L, Weng Q, He G-C (2003) Construction of a genomic library of wild rice and Agrobacterium-mediated transformation of large insert DNA linked to BPH resistance locus. Gene 321:113–121

    Article  PubMed  CAS  Google Scholar 

  • Hellens R, Mullineaux P, Klee H (2000) Technical focus: a guide to Agrobacterium binary Ti vectors. Trends Plant Sci 5:446–451

    Article  PubMed  CAS  Google Scholar 

  • Hiatt A, Caffferkey R, Bowdish K (1989) Production of antibodies in transgenic plants. Nature 342:76–78

    Article  PubMed  CAS  Google Scholar 

  • Hofgen R, Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res 16:9877

    Article  PubMed  CAS  Google Scholar 

  • Horn ME, Woodard SL, Howard JA (2004) Plant molecular farming: systems and products. Plant Cell Rep 22:711–720

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO 6:3901–3907

    CAS  Google Scholar 

  • Job D (2002) Plant biotechnology in agriculture. Biochimie 84:1105–1110

    Article  PubMed  CAS  Google Scholar 

  • Kim Y-R, Kim J-S, Lee S-H, Lee W-R, Sohn J-N, Chung Y-C, Shim H-K, Lee S-C, Kwon M-H, Kim Y-S (2006) Heavy and light chain variable single domains of an anti-DNA binding antibody hydrolyze both double- and single-stranded DNAs without sequence specificity. J Biol Chem 281:15287–15295

    Article  PubMed  CAS  Google Scholar 

  • Kingan TG (1989) A competitive enzyme-linked immunosorbent assay: Applications in the assay of peptides, steroids, and cyclic nucleotides. Anal Biochem 183:283–289

    Article  PubMed  CAS  Google Scholar 

  • Kojima M, Shioiri H, Nogawa M, Nozue M, Matsumoto D, Wada A, Saiki Y, Kiguchi K (2004) In planta transformation of kenaf plants (Hibiscus cannabinus var. aokawa No. 3) by Agrobacterium tumefaciens. J Biosci Bioeng 98:136–139

    PubMed  CAS  Google Scholar 

  • Larrick JW, Yu L, Naftzger C, Jaiswal S, Wycoff K (2001) Production of secretory IgA antibodies in plants. Biomol Eng 18:87–94

    Article  PubMed  CAS  Google Scholar 

  • Lin J-J, Assad-Garcia N, Kuo J (1995) Plant hormone effect of antibiotics on the transformation efficiency of plant tissues by Agrobacterium tumefaciens cells. Plant Sci 109:171–177

    Article  CAS  Google Scholar 

  • Maliga P, Graham I (2004) Plant biotechnology: molecular farming and metabolic engineering promise a new generation of high-tech crops. Curr Opin Plant Biol 7:149–151

    Article  PubMed  Google Scholar 

  • Miele L (1997) Plants as bioreactors for biopharmaceuticals: regulatory considerations. Trends Biotechnol 15:45–50

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–797

    Article  CAS  Google Scholar 

  • Peeters K, De Wilde C, De Jaeger G, Angenon G, Depicker A (2001) Production of antibodies and antibody fragments in plants. Vaccine 19:2756–2761

    Article  PubMed  CAS  Google Scholar 

  • Sawhney N, Sawhney S (2002) Local anaesthetic lidocaine modulates epiphyllous bud differentiation in Kalanchoe pinnata. Plant Growth Regul 38:45–49

    Article  CAS  Google Scholar 

  • Semenyuk EG, Stremovskiy OA, Edelweiss EF, Shirshikova OV, Balandin TG, Buryanov YI, Deyev SM (2007) Expression of single-chain antibody-barstar fusion in plants. Biochimie 89:31–38

    Article  PubMed  CAS  Google Scholar 

  • Smith JAC, Uribe EG, Ball E, Lüttge U (1984) ATPase activity associated with isolated vacuoles of the crassulacean acid metabolism plant Kalanchoë daigremontiana. Planta 162:299–304

    Article  CAS  Google Scholar 

  • Supartana P, Shimizu T, Shioiri H, Nogawa M, Nozue M, Kojima M (2005) Development of simple and efficient in planta transformation method for rice (Oryza sativa L.) using Agrobacterium tumefaciens. J Biosci Bioeng 100:391–397

    Article  PubMed  CAS  Google Scholar 

  • Tazaki K, Yoshida K, Shinohara K, Koshiba T, Yamamoto N (1995) Expression of cDNA for a bark lectin of Robinia in transgenic tobacco plants. FEBS Lett 377:54–58

    Article  PubMed  CAS  Google Scholar 

  • Twyman RM, Stoger E, Schillberg S, Christou P, Fischer R (2003) Molecular farming in plants: host systems and expression technology. Trends Biotechnol 21:570–578

    Article  PubMed  CAS  Google Scholar 

  • Walden R, Wingender R (1995) Gene-transfer and plant-regeneration (techniques). Trends Biotechnol 13:324–331

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a grant from Rural Development Administration in Korea (BioGreen21, 20080701-034-001-008-02-00) and by a grant from National Veterinary Research and Quarantine Service, Ministry of Food, Agriculture, Forestry, and Fisheries in 2008 (Project Code No., Z-AD14-2008-08-03), and Korean Research Foundation grant (KRF 2003-005-D00010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukchan Lee.

Additional information

Communicated by J. R. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, Y., Rhee, Y., Auh, CK. et al. Production of recombinant single chain antibodies (scFv) in vegetatively reproductive Kalanchoe pinnata by in planta transformation. Plant Cell Rep 28, 1593–1602 (2009). https://doi.org/10.1007/s00299-009-0758-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-009-0758-3

Keywords

Navigation