Skip to main content
Log in

An efficient mannose selection protocol for tomato that has no adverse effect on the ploidy level of transgenic plants

  • Genetics and Genomics
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

A protocol for Agrobacterium-mediated transformation with mannose selection was developed for cotyledon petiole, hypocotyl and leaf explants of tomato (Lycopersicon esculentum L. Mill). More than 400 transgenic plants from three tomato varieties were selected with 1% mannose in combination with 0.1–0.5% glucose. Average transformation frequencies ranged from 2.0 to 15.5% depending on the construct, genotype and type of tissue used for transformation. The highest transformation rate was obtained for hypocotyl explants from tomato variety SG048. The ploidy levels of 264 independent transgenic events and 233 non-transgenic plants regenerated from tissue culture were assessed by flow cytometry. The incidence of polyploids within the total population of transgenic plants varied from 10 to 78% and was not significantly different from the non-transgenic population. The greatest variation in the proportion of polyploids was observed in plants derived from different explant types, both in transgenic and non-transgenic regenerants, across three studied genotypes. Transgenic and non-transgenic plants regenerated from leaves included the highest number of normal diploid plants (82–100%), followed by cotyledon petiole-derived plants (63–78%). Transgenic plants produced from hypocotyls contained 22–58% diploids depending on the genotype used in transformation. Results described in this study demonstrate that, although transformation frequencies for leaf tissue are still lower under current protocols, the high percentage of diploids obtained make leaf tissue an attractive transformation target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BAP:

Benzylaminopurine

MS:

Murashige-Skoog

MsCHI:

Medicago sativa chalcone isomerase

PMI:

Phosphomannose isomerase

References

  • Boscariol RL, Almeida WAB, Derbyshire MTVC, Mourao Filho FAA, Mendes BMJ (2003) The use of the PMI/mannose selection system to recover transgenic sweet orange plants (Citrus sinensis L. Osbeck). Plant Cell Rep 22:122–128

    Article  CAS  PubMed  Google Scholar 

  • Bulk RW van den, Loffler HJM, Lindhout WH, Koornneef M (1990) Somaclonal variation in tomato: effect of explant source a comparison with chemical mutagenesis. Theor Appl Genet 80:817–825

    Google Scholar 

  • Callis J, Raasch JA, Vierstra RD (1990) Ubiquitin extension proteins of Arabidopsis thaliana: structure, localization and expression of their promoters in transgenic tobacco. J Biol Chem 265:12486–12493

    CAS  PubMed  Google Scholar 

  • Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci USA 81:1991–1995

    CAS  PubMed  Google Scholar 

  • Chyi YS, Phillips GC (1987) High efficiency Agrobacterium-mediated transformation of Lycopersicon based on conditions favorable for regeneration. Plant Cell Rep 6:105–108

    CAS  Google Scholar 

  • Davis ME, Lineberger RD, Miller AR (1991) Effects of tomato cultivar, leaf age, and bacterial strain on transformation by Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult 24:115–121

    Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    CAS  Google Scholar 

  • Ellul P, Garcia-Sogo B, Pineda B, Rios G, Roig LA, Moreno V (2003) The ploidy level of transgenic plants in Agrobacterium-mediated transformation of tomato cotyledons (Lycopersicon esculentum L. Mill.) is genotype and procedure dependent. Theor Appl Genet 106:231–238

    CAS  PubMed  Google Scholar 

  • Fillati JJ, Kiser J, Rose R, Comai L (1987) Efficient transfer of a glyphosate tolerance gene into tomato using a binary Agrobacterium tumefaciens vector. Biotechnology 5:726–730

    CAS  Google Scholar 

  • Fling ME, Kopf J, Richards C (1985) Nucleotide sequence of the transposon Tn7 gene encoding an aminoglycoside-modifying enzyme, 3″(9)-0-nucleotidyltransferase. Nucleic Acids Res 13:7095–7106

    CAS  PubMed  Google Scholar 

  • Frary A, Earle ED (1996) An examination of factors affecting the efficiency of Agrobacterium-mediated transformation of tomato. Plant Cell Rep 16:235–240

    CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:150–158

    Google Scholar 

  • Haldrup A, Petersen SG, Okkels FT (1998) The xylose isomerase gene from Thermoanaerobacterium thermosulfurogenes allows effective selection of transgenic plant cells using d-xylose as the selection agent. Plant Mol Biol 37:287–296

    Article  CAS  PubMed  Google Scholar 

  • Hamza S, Chupeau Y (1993) Re-evaluation of conditions for plant regeneration and Agrobacterium-mediated transformation from tomato (Lycopersicon esculentum). J Exp Bot 44:1837–1845

    CAS  Google Scholar 

  • Hohn B, Levy AA, Puchta H (2001) Elimination of selection markers from transgenic plants. Curr Opin Biotechnol 12:139–143

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Phillips GC (2001) A combination of overgrowth-control antibiotics improves Agrobacterium tumefaciens-mediated transformation efficiency for cultivated tomato (L. esculentum). In Vitro Cell Dev Biol Plant 37:12–18

    CAS  Google Scholar 

  • Ingham DJ, Beer S, Money S, Hansen G (2001) Quantitative real-time PCR assay for determining transgene copy number in transformed plants. BioTechniques 31:132–140

    CAS  PubMed  Google Scholar 

  • Itoh Y, Watson JM, Haas D, Leisinger T (1984) Genetic and molecular characterization of the Pseudomonas plasmid pVS1. Plasmid 11:206–220

    CAS  PubMed  Google Scholar 

  • Jacobs JP, Yoder JI (1989) Ploidy levels in transgenic plants determined by chloroplast number. Plant Cell Rep 7:662–664

    Google Scholar 

  • Joersbo M, Donaldson I, Kreiberg J, Petersen SG, Brunstedt J, Okkels FT (1998) Analysis of mannose selection used for transformation of sugar beet. Mol Breed 4:111–117

    Article  CAS  Google Scholar 

  • Joersbo M, Petersen SG, Okkels FT (1999) Parameters interacting with mannose selection employed for the production of transgenic sugar beet. Physiol Plant 105:109–115

    CAS  Google Scholar 

  • Joubes J, Chevalier C (2000) Endoreduplication in higher plants. Plant Mol Biol 43:735–745

    Article  CAS  PubMed  Google Scholar 

  • Koornneef M, Hanhart C, Jongsma M, Toma I, Weide R, Zabel P, Hille J (1986) Breeding of a tomato genotype readily accessible to genetic manipulation. Plant Sci 45:201–208

    Article  Google Scholar 

  • Kudo N, Kimura Y (2001a) Flow cytometric evidence for endopolyploidy in seedlings of some Brassica species. Theor Appl Genet 102:104–110

    Article  CAS  Google Scholar 

  • Kudo N, Kimura Y (2001b) Patterns of endopolyploidy during seedling development in cabbage (Brassica oleracea L.). Ann Bot 87:275–281

    Article  Google Scholar 

  • Ling H-Q, Kriseleit D, Ganal MW (1998) Effect of ticarcillin/potassium clavulanate on callus growth and shoot regeneration in Agrobacterium-mediated transformation of tomato (Lycopersicon esculentum Mill.). Plant Cell Rep 17:843–847

    CAS  Google Scholar 

  • Lucca P, Ye X, Potrykus I (2001) Effective selection and regeneration of transgenic rice plants with mannose as selective agent. Mol Breed 7:43–49

    Article  CAS  Google Scholar 

  • Maliga P (1982) Cell culture procedures for Nicotiana plumbaginifolia. Plant Mol Biol News 3:88–94

    Google Scholar 

  • Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, Markelov ML, Lukyanov SA (1999) Fluorescent proteins from non bioluminescent Anthozoa species. Nat Biotechnol 17:969–973

    CAS  PubMed  Google Scholar 

  • McCormick S, Niedermeyer J, Fry J, Barnason A, Horsch R, Fraley R (1986) Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Rep 5:81–85

    CAS  Google Scholar 

  • Miles JS, Guest JR (1984) Nucleotide sequence and transcriptional start point of the phosphomannose isomerase gene (manA) of Escherichia coli. Gene 32:41–48

    CAS  PubMed  Google Scholar 

  • Mishiba K, Mii M (2000) Polysomaty analysis in diploid and tetraploid Portulaca grandiflora. Plant Sci 156:213–219

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Negrotto D, Jolley M, Beer S, Wenck AR, Hansen G (2000) The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Rep 19:798–803

    Google Scholar 

  • Park SH, Morris JL, Park JE, Hirschi KD, Smith RH (2003) Efficient and genotype-independent Agrobacterium-mediated tomato transformation. J Plant Physiol 160:1253–1257

    CAS  PubMed  Google Scholar 

  • Penna S, Sagi L, Swennen R (2002) Positive selectable marker genes for routine plant transformation. In Vitro Cell Dev Biol Plant 38:125–128

    Article  CAS  Google Scholar 

  • Reed JN, Privalle LS, Powell MJ, Meghji M, Dawson J, Dunder EM, Suttie J, Wenck AR, Launis K, Kramer C, Chang Y-F, Hansen G, Wright M (2001) Phosphomannose isomerase: an efficient selectable marker for plant transformation. In Vitro Cell Dev Biol Plant 37:127–132

    Google Scholar 

  • Roekel JSC van, Damm B, Melchers LS, Hoekema A (1993) Factors influencing transformation frequency of tomato (Lycopersicon esculentum). Plant Cell Rep 12:644–647

    Google Scholar 

  • Shahin EA, Sukhapinda K, Simpson RB, Spivey R (1986) Transformation of cultivated tomato by a binary vector in Agrobacterium rhizogenes: transgenic plants with normal phenotypes harbor binary vector T-DNA, but not Ri-plasmid T-DNA. Theor Appl Genet 72:770–777

    CAS  Google Scholar 

  • Smulders MJM, Rus-Kortekaas W, Gilissen LJW (1994) Development of polysomaty during differentiation in diploid and tetraploid tomato (Lycopersicon esculentum) plants. Plant Sci 97:53–60

    Article  Google Scholar 

  • Smulders MJM, Rus-Kortekaas W, Gilissen LJW (1995) Natural variation in patterns of polysomaty among individual tomato plants and their regenerated progeny. Plant Sci 106:129–139

    CAS  Google Scholar 

  • Stavolone L, Kononova M, Pauli S, Ragozzino A, de Haan P, Milligan S, Lawton K, Hohn T (2003) Cestrum yellow leaf curling virus (CmYLCV) promoter: a new strong constitutive promoter for heterologous gene expression in a wide variety of crops. Plant Mol Biol 53:703–713

    Article  Google Scholar 

  • Ultzen T, Gielen J, Venema F, Westerbroek A, de Haan P, Tan M-L, Schram A, van Grinsven M, Goldbach R (1995) Resistance to tomato spotted wilt virus in transgenic tomato hybrids. Euphytica 85:159–168

    CAS  Google Scholar 

  • Wang AS, Evans RA, Altendorf PR, Hanten JA, Doyle MC, Rosichan JL (2000) A mannose selection system for production of fertile transgenic maize plants from protoplasts. Plant Cell Rep 19:654–660

    CAS  Google Scholar 

  • Wright M, Dawson J, Dunder E, Suttie J, Reed J, Kramer C, Chang Y, Novitzky R, Wang H, Artim-Moore L (2001) Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant Cell Rep 20:429–436

    Google Scholar 

  • Zhang P, Puonti-Kaerlas J (2000) PIG-mediated cassava transformation using positive and negative selection. Plant Cell Rep 19:1041–1048

    Google Scholar 

Download references

Acknowledgements

We are grateful to Natasha Kornegay for assisting with tomato transformation experiments, Yu-Yu Bai for helping with statistical analysis, Mary Fielder for performing the TaqMan assay and Brian Potter for taking care of plants in the greenhouse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Sigareva.

Additional information

Communicated by E.D. Earle

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sigareva, M., Spivey, R., Willits, M.G. et al. An efficient mannose selection protocol for tomato that has no adverse effect on the ploidy level of transgenic plants. Plant Cell Rep 23, 236–245 (2004). https://doi.org/10.1007/s00299-004-0809-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-004-0809-8

Keywords

Navigation