Skip to main content
Log in

Microtubule dynamics decoded by the epigenetic state of centromeric chromatin

  • Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Cell division with accurate chromosome segregation is fundamental to cell survival of all organisms. The precise molecular mechanisms that ensure accurate chromosome segregation are still being discovered using a variety of experimental systems and approaches. Microtubule attachment to the kinetochore is a prerequisite for mitotic progression, failure of which activates the spindle assembly checkpoint (SAC). The dynamic tension generated by interaction of the centromere, kinetochore and microtubules is a key regulator of the SAC. Here, in the context of current literature we discuss our recent observation in fission yeast that epigenetic alterations in centromeric and pericentromeric chromatin can compensate for altered dynamics of kinetochore–microtubule attachment to permit escape from mitotic arrest. A role for the spatial configuration of the centromere to influence the finely tuned regulators of mitotic progression opens up new avenues for research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Ahmed S, Dul B, Qiu X, Walworth NC (2007) Msc1 acts through histone H2A.Z to promote chromosome stability in Schizosaccharomyces pombe. Genetics 177:1487–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allshire RC, Ekwall K (2015) Epigenetic regulation of chromatin states in Schizosaccharomyces pombe. Cold Spring Harb Perspect Biol 7:a018770

    Article  PubMed  Google Scholar 

  • Bacon T, Seiler C, Wolny M, Hughes R, Watson P et al (2015) Histone deacetylase 3 indirectly modulates tubulin acetylation. Biochem J 472:367–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey AO, Panchenko T, Shabanowitz J, Lehman SM, Bai DL et al (2015) Identification of the posttranslational modifications present in centromeric chromatin. Mol Cell Proteomics 15:918–931

    Article  PubMed  Google Scholar 

  • Bakhoum SF, Genovese G, Compton DA (2009) Deviant kinetochore microtubule dynamics underlie chromosomal instability. Curr Biol 19:1937–1942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergmann JH, Jakubsche JN, Martins NM, Kagansky A, Nakano M et al (2012) Epigenetic engineering: histone H3K9 acetylation is compatible with kinetochore structure and function. J Cell Sci 125:411–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi E, Choe H, Min J, Choi JY, Kim J et al (2009) BubR1 acetylation at prometaphase is required for modulating APC/C activity and timing of mitosis. EMBO J 28:2077–2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choy JS, Acuna R, Au WC, Basrai MA (2011) A role for histone H4K16 hypoacetylation in Saccharomyces cerevisiae kinetochore function. Genetics 189:11–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cimini D (2008) Merotelic kinetochore orientation, aneuploidy, and cancer. Biochim Biophys Acta 1786:32–40

    CAS  PubMed  Google Scholar 

  • Etemad B, Kuijt TE, Kops GJ (2015) Kinetochore–microtubule attachment is sufficient to satisfy the human spindle assembly checkpoint. Nat Commun 6:8987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falkenberg KJ, Johnstone RW (2014) Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov 13:673–691

    Article  CAS  PubMed  Google Scholar 

  • George AA, Walworth NC (2015) Escape from mitotic arrest: an unexpected connection between microtubule dynamics and epigenetic regulation of centromeric chromatin in Schizosaccharomyces pombe. Genetics 201:1467–1478

    Article  CAS  PubMed  Google Scholar 

  • Godek KM, Kabeche L, Compton DA (2015) Regulation of kinetochore–microtubule attachments through homeostatic control during mitosis. Nat Rev Mol Cell Biol 16:57–64

    Article  CAS  PubMed  Google Scholar 

  • Goshima G, Saitoh S, Yanagida M (1999) Proper metaphase spindle length is determined by centromere proteins Mis12 and Mis6 required for faithful chromosome segregation. Genes Dev 13:1664–1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregan J, Polakova S, Zhang L, Tolic-Norrelykke IM, Cimini D (2011) Merotelic kinetochore attachment: causes and effects. Trends Cell Biol 21:374–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu KS, Toda T (2011) Ndc80 internal loop interacts with Dis1/TOG to ensure proper kinetochore-spindle attachment in fission yeast. Curr Biol 21:214–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A et al (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417:455–458

    Article  CAS  PubMed  Google Scholar 

  • Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4:253–265

    Article  CAS  PubMed  Google Scholar 

  • Li L, Yang XJ (2015) Tubulin acetylation: responsible enzymes, biological functions and human diseases. Cell Mol Life Sci 72:4237–4255

    Article  CAS  PubMed  Google Scholar 

  • London N, Biggins S (2014) Signalling dynamics in the spindle checkpoint response. Nat Rev Mol Cell Biol 15:736–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma P, Schultz RM (2013) Histone deacetylase 2 (HDAC2) regulates chromosome segregation and kinetochore function via H4K16 deacetylation during oocyte maturation in mouse. PLoS Genet 9:e1003377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maresca TJ, Salmon ED (2010) Welcome to a new kind of tension: translating kinetochore mechanics into a wait-anaphase signal. J Cell Sci 123:825–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McAinsh AD, Meraldi P (2011) The CCAN complex: linking centromere specification to control of kinetochore–microtubule dynamics. Semin Cell Dev Biol 22:946–952

    Article  CAS  PubMed  Google Scholar 

  • McKinley KL, Sekulic N, Guo LY, Tsinman T, Black BE et al (2015) The CENP–L–N complex forms a critical node in an integrated meshwork of interactions at the centromere–kinetochore interface. Mol Cell 60:886–898

    Article  CAS  PubMed  Google Scholar 

  • Musacchio A (2015) The molecular biology of spindle assembly checkpoint signaling dynamics. Curr Biol 25:R1002–R1018

    Article  CAS  PubMed  Google Scholar 

  • Nerusheva OO, Galander S, Fernius J, Kelly D, Marston AL (2014) Tension-dependent removal of pericentromeric shugoshin is an indicator of sister chromosome biorientation. Genes Dev 28:1291–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • North BJ, Marshall BL, Borra MT, Denu JM, Verdin E (2003) The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell 11:437–444

    Article  CAS  PubMed  Google Scholar 

  • Ohkura H, Adachi Y, Kinoshita N, Niwa O, Toda T et al (1988) Cold-sensitive and caffeine-supersensitive mutants of the Schizosaccharomyces pombe dis genes implicated in sister chromatid separation during mitosis. EMBO J 7:1465–1473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petrovic A, Pasqualato S, Dube P, Krenn V, Santaguida S et al (2010) The MIS12 complex is a protein interaction hub for outer kinetochore assembly. J Cell Biol 190:835–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robbins AR, Jablonski SA, Yen TJ, Yoda K, Robey R et al (2005) Inhibitors of histone deacetylases alter kinetochore assembly by disrupting pericentromeric heterochromatin. Cell Cycle 4:717–726

    Article  CAS  PubMed  Google Scholar 

  • Shida T, Cueva JG, Xu Z, Goodman MB, Nachury MV (2010) The major alpha-tubulin K40 acetyltransferase alphaTAT1 promotes rapid ciliogenesis and efficient mechanosensation. Proc Natl Acad Sci USA 107:21517–21522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suematsu T, Li Y, Kojima H, Nakajima K, Oshimura M et al (2014) Deacetylation of the mitotic checkpoint protein BubR1 at lysine 250 by SIRT2 and subsequent effects on BubR1 degradation during the prometaphase/anaphase transition. Biochem Biophys Res Commun 453:588–594

    Article  CAS  PubMed  Google Scholar 

  • Sullivan BA, Karpen GH (2004) Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat Struct Mol Biol 11:1076–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanno Y, Susumu H, Kawamura M, Sugimura H, Honda T et al (2015) The inner centromere–shugoshin network prevents chromosomal instability. Science 349:1237–1240

    Article  CAS  PubMed  Google Scholar 

  • Tauchman EC, Boehm FJ, DeLuca JG (2015) Stable kinetochore–microtubule attachment is sufficient to silence the spindle assembly checkpoint in human cells. Nat Commun 6:10036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varma D, Salmon ED (2012) The KMN protein network—chief conductors of the kinetochore orchestra. J Cell Sci 125:5927–5936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Higgins JM (2013) Histone modifications and mitosis: countermarks, landmarks, and bookmarks. Trends Cell Biol 23:175–184

    Article  CAS  PubMed  Google Scholar 

  • Westhorpe FG, Straight AF (2015) The centromere: epigenetic control of chromosome segregation during mitosis. Cold Spring Harb Perspect Biol 7:a015818

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy C. Walworth.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

George, A.A., Walworth, N.C. Microtubule dynamics decoded by the epigenetic state of centromeric chromatin. Curr Genet 62, 691–695 (2016). https://doi.org/10.1007/s00294-016-0588-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-016-0588-0

Keywords

Navigation