Skip to main content
Log in

Bacterial protein acetylation: new discoveries unanswered questions

  • Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Nε-acetylation is emerging as an abundant post-translational modification of bacterial proteins. Two mechanisms have been identified: one is enzymatic, dependent on an acetyltransferase and acetyl-coenzyme A; the other is non-enzymatic and depends on the reactivity of acetyl phosphate. Some, but not most, of those acetylations are reversed by deacetylases. This review will briefly describe the current status of the field and raise questions that need answering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • AbouElfetouh A, Kuhn ML, Hu LI, Scholle MD, Sorensen DJ, Sahu AK, Becher D, Antelmann H, Mrksich M, Anderson WF et al (2015) The E. coli sirtuin CobB shows no preference for enzymatic and nonenzymatic lysine acetylation substrate sites. Microbiologyopen 4:66–83

    Article  CAS  PubMed  Google Scholar 

  • Baeza J, Dowell JA, Smallegan MJ, Fan J, Amador-Noguez D, Khan Z, Denu JM (2014) Stoichiometry of site-specific lysine acetylation in an entire proteome. J Biol Chem 289:21326–21338

    Article  PubMed  PubMed Central  Google Scholar 

  • Baeza J, Smallegan MJ, Denu JM (2015) Site-specific reactivity of nonenzymatic lysine acetylation. ACS Chem Biol 10:122–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barak R, Eisenbach M (2001) Acetylation of the response regulator, CheY, is involved in bacterial chemotaxis. Mol Microbiol 40:731–743

    Article  CAS  PubMed  Google Scholar 

  • Barak R, Welch M, Yanovsky A, Oosawa K, Eisenbach M (1992) Acetyladenylate or its derivative acetylates the chemotaxis protein CheY in vitro and increases its activity at the flagellar switch. Biochemistry 31:10099–10107

    Article  CAS  PubMed  Google Scholar 

  • Barak R, Prasad K, Shainskaya A, Wolfe AJ, Eisenbach M (2004) Acetylation of the chemotaxis response regulator CheY by acetyl-CoA synthetase purified from Escherichia coli. J Mol Biol 342:383–401

    Article  CAS  PubMed  Google Scholar 

  • Barak R, Yan J, Shainskaya A, Eisenbach M (2006) The chemotaxis response regulator CheY can catalyze its own acetylation. J Mol Biol 359:251–265

    Article  CAS  PubMed  Google Scholar 

  • Bernal V, Castano-Cerezo S, Gallego-Jara J, Ecija-Conesa A, de Diego T, Iborra JL, Canovas M (2014) Regulation of bacterial physiology by lysine acetylation of proteins. N Biotechnol 31:586–595

    Article  CAS  PubMed  Google Scholar 

  • Blander G, Guarente L (2004) The Sir2 family of protein deacetylases. Annu Rev Biochem 73:417–435

    Article  CAS  PubMed  Google Scholar 

  • Cambre A, Zimmermann M, Sauer U, Vivijs B, Cenens W, Michiels CW, Aertsen A, Loessner MJ, Noben JP, Ayala JA et al (2015) Metabolite profiling and peptidoglycan analysis of transient cell wall-deficient bacteria in a new Escherichia coli model system. Environ Microbiol 17:1586–1599

    Article  CAS  PubMed  Google Scholar 

  • Castanie-Cornet MP, Cam K, Bastiat B, Cros A, Bordes P, Gutierrez C (2010) Acid stress response in Escherichia coli: mechanism of regulation of gadA transcription by RcsB and GadE. Nucleic Acids Res 38:3546–3554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castano-Cerezo S, Bernal V, Blanco-Catala J, Iborra J, Canovas M (2011) cAMP-CRP co-ordinates the expression of the protein acetylation pathway with central metabolism in Escherichia coli. Mol Microbiol 82:1110–1128

    Article  CAS  PubMed  Google Scholar 

  • Castano-Cerezo S, Bernal V, Post H, Fuhrer T, Cappadona S, Sanchez-Diaz NC, Sauer U, Heck AJ, Altelaar AF, Canovas M (2014) Protein acetylation affects acetate metabolism, motility and acid stress response in Escherichia coli. Mol Syst Biol 10:762

    Article  PubMed  PubMed Central  Google Scholar 

  • Chan CH, Garrity J, Crosby HA, Escalante-Semerena JC (2011) In Salmonella enterica, the sirtuin-dependent protein acylation/deacylation system (SDPADS) maintains energy homeostasis during growth on low concentrations of acetate. Mol Microbiol 80:168–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colton DM, Stabb EV (2015) Rethinking the roles of CRP, cAMP, and sugar-mediated global regulation in the Vibrionaceae. Curr Genet [Epub ahead of print]

  • d’Alayer J, Expert-Bezancon N, Beguin P (2007) Time- and temperature-dependent acetylation of the chemokine RANTES produced in recombinant Escherichia coli. Protein Expr Purif 55:9–16

    Article  PubMed  Google Scholar 

  • Danese PN, Silhavy TJ (1998) CpxP, a stress-combative member of the Cpx regulon. J Bacteriol 180:831–839

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fraiberg M, Afanzar O, Cassidy CK, Gabashvili A, Schulten K, Levin Y, Eisenbach M (2014) CheY’s acetylation sites responsible for generating clockwise flagellar rotation in Escherichia coli. Mol Microbiol 95:231–244

  • Fredericks CE, Shibata S, Aizawa S-I, Reimann SA, Wolfe AJ (2006) Acetyl phosphate-sensitive regulation of flagellar biogenesis and capsular biosynthesis depends on the Rcs phosphorelay. Mol Microbiol 61:734–747

    Article  CAS  PubMed  Google Scholar 

  • Gardner JG, Grundy FJ, Henkin TM, Escalante-Semerena JC (2006) Control of acetyl-coenzyme a synthetase (AcsA) activity by acetylation/deacetylation without NAD+ involvement in Bacillus subtilis. J Bacteriol 188:5460–5468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrity J, Gardner JG, Hawse W, Wolberger C, Escalante-Semerena JC (2007) N-lysine propionylation controls the activity of propionyl-CoA synthetase. J Biol Chem 282:30239–30245

    Article  CAS  PubMed  Google Scholar 

  • Glozak MA, Seto E (2007) Histone deacetylases and cancer. Oncogene 26:5420–5432

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Bandyopadhyay P, Schilling B, Young MM, Fujii N, Aynechi T, Guy RK, Kuntz ID, Gibson BW (2008) Partial acetylation of lysine residues improves intraprotein cross-linking. Anal Chem 80:951–960

    Article  CAS  PubMed  Google Scholar 

  • Hentchel KL, Escalante-Semerena JC (2015) Acylation of biomolecules in prokaryotes: a widespread strategy for the control of biological function and metabolic stress. MMBR 79:321–346

    Article  PubMed  PubMed Central  Google Scholar 

  • Hentchel KL, Thao S, Intile PJ, Escalante-Semerena JC (2015) Deciphering the regulatory circuitry that controls reversible lysine acetylation in Salmonella enterica. MBio 6:e00891

  • Hildmann C, Riester D, Schwienhorst A (2007) Histone deacetylases—an important class of cellular regulators with a variety of functions. Appl Microbiol Biotechnol 75:487–497

    Article  CAS  PubMed  Google Scholar 

  • Hu LI, Lima BP, Wolfe AJ (2010) Bacterial protein acetylation: the dawning of a new age. Mol Microbiol 77:15–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu LI, Chi BK, Kuhn ML, Filippova EV, Walker-Peddakotla AJ, Basell K, Becher D, Anderson WF, Antelmann H, Wolfe AJ (2013) Acetylation of the response regulator RcsB controls transcription from a small RNA promoter. J Bacteriol 195:4174–4186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang CJ, Lin H, Yang X (2012) Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J Ind Microbiol Biotechnol 39:383–399

    Article  CAS  PubMed  Google Scholar 

  • Jones JD, O’Connor CD (2011) Protein acetylation in prokaryotes. Proteomics 11:3012–3022

    Article  CAS  PubMed  Google Scholar 

  • Kim GW, Yang XJ (2011) Comprehensive lysine acetylomes emerging from bacteria to humans. Trends Biochem Sci 36:211–220

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Yu BJ, Kim JA, Lee Y-J, Choi S-G, Kang S, Pan J-G (2013) The acetylproteome of Gram-positive model bacterium Bacillus subtilis. Proteomics 13:1726–1736

    Article  CAS  PubMed  Google Scholar 

  • Klein AH, Shulla A, Reimann SA, Keating DH, Wolfe AJ (2007) The intracellular concentration of acetyl phosphate in Escherichia coli is sufficient for direct phosphorylation of two-component response regulators. J Bacteriol 189:5574–5581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosono S, Tamura M, Suzuki S, Kawamura Y, Yoshida A, Nishiyama M, Yoshida M (2015) Changes in the acetylome and succinylome of Bacillus subtilis in response to carbon source. PLoS One 10:e0131169

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuhn ML, Zemaitaitis B, Hu LI, Sahu A, Sorensen D, Minasov G, Lima BP, Scholle M, Mrksich M, Anderson WF et al (2014) Structural, kinetic and proteomic characterization of acetyl phosphate-dependent bacterial protein acetylation. PLoS One 9:e94816

    Article  PubMed  PubMed Central  Google Scholar 

  • Laubacher ME, Ades SE (2008) The Rcs phosphorelay is a cell envelope stress response activated by peptidoglycan stress and contributes to intrinsic antibiotic resistance. J Bacteriol 190:2065–2074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee D-W, Kim D, Lee Y-J, Kim J-A, Choi JY, Kang S, Pan J-G (2013) Proteomic analysis of acetylation in thermophilic Geobacillus kaustophilus. Proteomics 13:2278–2282

    Article  CAS  PubMed  Google Scholar 

  • Li R, Gu J, Chen Y-Y, Xiao C-L, Wang L-W, Zhang Z-P, Bi L-J, Wei H-P, Wang X-D, Deng J-Y et al (2010) CobB regulates Escherichia coli chemotaxis by deacetylating the response regulator CheY. Mol Microbiol 76:1162–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang W, Malhotra A, Deutscher Murray P (2011) Acetylation regulates the stability of a bacterial protein: growth stage-dependent modification of RNase R. Mol Cell 44:160–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liarzi O, Barak R, Bronner V, Dines M, Sagi Y, Shainskaya A, Eisenbach M (2010) Acetylation represses the binding of CheY to its target proteins. Mol Microbiol 76:932–943

    Article  CAS  PubMed  Google Scholar 

  • Lima BP, Antelmann H, Gronau K, Chi BK, Becher D, Brinsmade SR, Wolfe AJ (2011) Involvement of protein acetylation in glucose-induced transcription of a stress-responsive promoter. Mol Microbiol 81:1190–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lima BP, Thanh Huyen TT, Bassell K, Becher D, Antelmann H, Wolfe AJ (2012) Inhibition of acetyl phosphate-dependent transcription by an acetylatable lysine on RNA polymerase. J Biol Chem 287:32147–32160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lombard DB, Dash BP, Kumar S (2015) Acetyl-ed question in mitochondrial biology? EMBO J 34:2597–2600

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Wood TK (2011) Protein acetylation in prokaryotes increases stress resistance. Biochem Biophys Res Commun 410:846–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahon BP, Lomelino CL, Salguero AL, Driscoll JM, Pinard MA, McKenna R (2015) Observed surface lysine acetylation of human carbonic anhydrase II expressed in Escherichia coli. Protein Sci 24:1800–1807

    Article  CAS  PubMed  Google Scholar 

  • Majdalani N, Hernandez D, Gottesman S (2002) Regulation and mode of action of the second small RNA activator of RpoS translation, RprA. Mol Microbiol 46:813–826

    Article  CAS  PubMed  Google Scholar 

  • Mizrahi I, Biran D, Ron EZ (2006) Requirement for the acetyl phosphate pathway in Escherichia coli ATP-dependent proteolysis. Mol Microbiol 62:201–211

    Article  CAS  PubMed  Google Scholar 

  • Mizrahi I, Biran D, Ron EZ (2009) Involvement of the Pta–AckA pathway in protein folding and aggregation. Res Microbiol 160:80–84

    Article  CAS  PubMed  Google Scholar 

  • Moya G, Gonzalez LJ, Huerta V, Garcia Y, Morera V, Perez D, Brena F, Arana M (2002) Isolation and characterization of modified species of a mutated (Cys125-Ala) recombinant human interleukin-2. J Chromatogr A 971:129–142

    Article  CAS  PubMed  Google Scholar 

  • Pflumm MN, Gruber SC, Tsarbopoulos A, Wylie D, Pramanik B, Bausch JN, Patel ST (1997) Isolation and characterization of an acetylated impurity in Escherichia coli-derived recombinant human interleukin-10 (IL-10) drug substance. Pharm Res 14:833–836

    Article  CAS  PubMed  Google Scholar 

  • Ranjit DK, Young KD (2013) The Rcs stress response and accessory envelope proteins are required for de novo generation of cell shape in Escherichia coli. J Bacteriol 195:2452–2462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rardin MJ, Newman JC, Held JM, Cusack MP, Sorensen DJ, Li B, Schilling B, Mooney SD, Kahn CR, Verdin E et al (2013) Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proc Natl Acad Sci USA 110:6601–6606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren J, Sang Y, Ni J, Tao J, Lu J, Zhao M, Yao YF (2015) Acetylation regulates survival of Salmonella Typhimurium in acid stress. Appl Environ Microbiol 81:5675–5682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross FE, Zamborelli T, Herman AC, Yeh CH, Tedeschi NI, Luedke ES (1996) Detection of acetylated lysine residues using sequencing by Edman degradation and mass spectrometry. In: Marshak D (ed) Techniques in protein chemistry. Academic, New York, pp 201–207

    Google Scholar 

  • Schilling B, Rardin MJ, MacLean BX, Zawadzka AM, Frewen BE, Cusack MP, Sorensen DJ, Bereman MS, Jing E, Wu CC et al (2012) Platform-independent and label-free quantitation of proteomic data Using MS1 extracted ion chromatograms in skyline. Mol Cell Proteomics 11:202–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schilling B, Christensen D, Davis R, Sahu AK, Hu LI, Walker-Peddakotla A, Sorensen DJ, Zemaitaitis B, Gibson BW, Wolfe AJ (2015) Protein acetylation dynamics in response to carbon overflow in Escherichia coli. Mol Microbiol. doi:10.1111/mmi.13161. [Epub ahead of print]

  • Shimada T, Fujita N, Yamamoto K, Ishihama A (2011) Novel roles of cAMP receptor protein (CRP) in regulation of transport and metabolism of carbon sources. PLoS One 6:e20081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soppa J (2010) Protein acetylation in archaea, bacteria, and eukaryotes. Archaea. doi:10.1155/2010/820681

  • Starai VJ, Escalante-Semerena JC (2004a) Acetyl-coenzyme A synthetase (AMP forming). Cell Mol Life Sci 61:2020–2030

    Article  CAS  PubMed  Google Scholar 

  • Starai VJ, Escalante-Semerena JC (2004b) Identification of the protein acetyltransferase (Pat) enzyme that acetylates acetyl-CoA synthetase in Salmonella enterica. J Mol Biol 340:1005–1012

    Article  CAS  PubMed  Google Scholar 

  • Starai VJ, Celic I, Cole RN, Boeke JD, Escalante-Semerena JC (2002) Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science 298:2390–2392

    Article  CAS  PubMed  Google Scholar 

  • Starai VJ, Takahashi H, Boeke JD, Escalante-Semerena JC (2003) Short-chain fatty acid activation by acyl-coenzyme A synthetases requires SIR2 protein function in Salmonella enterica and Saccharomyces cerevisiae. Genetics 163:545–555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suenaga M, Ohmae H, Tsuji S, Tanaka Y, Koyama N, Nishimura O (1996) epsilon-N-acetylation in the production of recombinant human basic fibroblast growth factor mutein. Prep Biochem Biotechnol 26:259–270

    Article  CAS  PubMed  Google Scholar 

  • Szewczak J, Bierczynska-Krzysik A, Piejko M, Mak P, Stadnik D (2015) Isolation and characterization of acetylated derivative of recombinant insulin lispro produced in Escherichia coli. Pharm Res 32:2450–2457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takao T, Kobayashi M, Nishimura O, Shimonishi Y (1987) Chemical characterization of recombinant human leukocyte interferon A using fast atom bombardment mass spectrometry. J Biol Chem 262:3541–3547

    CAS  PubMed  Google Scholar 

  • Thao S, Escalante-Semerena JC (2011a) Biochemical and thermodynamic analyses of Salmonella enterica Pat, a multidomain, multimeric N(epsilon)-lysine acetyltransferase involved in carbon and energy metabolism. MBio 2(5):e00216-11

    Article  PubMed  PubMed Central  Google Scholar 

  • Thao S, Escalante-Semerena JC (2011b) Control of protein function by reversible N[epsilon]-lysine acetylation in bacteria. Curr Opin Microbiol 14:200–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verdin E, Ott M (2015) 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat Rev Mol Cell Biol 16:258–264

    Article  CAS  PubMed  Google Scholar 

  • Violand BN, Schlittler MR, Lawson CQ, Kane JF, Siegel NR, Smith CE, Kolodziej EW, Duffin KL (1994) Isolation of Escherichia coli synthesized recombinant eukaryotic proteins that contain epsilon-N-acetyllysine. Protein Sci 3:1089–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner G, Payne R (2013) Widespread and enzyme-independent N{epsilon}-acetylation and N{epsilon}-succinylation in the chemical conditions of the mitochondrial matrix. J Biol Chem 288:29036–29045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Zhang Y, Yang C, Xiong H, Lin Y, Yao J, Li H, Xie L, Zhao W, Yao Y et al (2010) Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 327:1004–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinert Brian T, Iesmantavicius V, Wagner Sebastian A, Scholz C, Gummesson B, Beli P, Nystrom T, Choudhary C (2013) Acetyl-phosphate is a critical determinant of lysine acetylation in E. coli. Mol Cell 51:265–272

    Article  CAS  PubMed  Google Scholar 

  • Weinert BT, Moustafa T, Iesmantavicius V, Zechner R, Choudhary C (2015) Analysis of acetylation stoichiometry suggests that SIRT3 repairs nonenzymatic acetylation lesions. EMBO J 34:2620–2632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfe AJ (2005) The acetate switch. Microbiol Mol Biol Rev 69:12–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfe AJ (2015) Glycolysis for microbiome generation. Microbiol Spectr. doi:10.1128/microbiolspec.MBP-0014-2014

  • Wu X, Vellaichamy A, Wang D, Zamdborg L, Kelleher NL, Huber SC, Zhao Y (2013) Differential lysine acetylation profiles of Erwinia amylovora strains revealed by proteomics. J Proteomics 79:60–71

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Barak R, Liarzi O, Shainskaya A, Eisenbach M (2008) In vivo acetylation of CheY, a response regulator in chemotaxis of Escherichia coli. J Mol Biol 376:1260–1271

    Article  CAS  PubMed  Google Scholar 

  • Yang N, Lan L (2015) Pseudomonas aeruginosa Lon and ClpXP proteases: roles in linking carbon catabolite repression system with quorum-sensing system. Curr Genet. [Epub ahead of print]

  • Yang X-J, Seto E (2008a) Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol Cell 31:449–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang XJ, Seto E (2008b) The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol 9:206–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu B, Kim J, Moon J, Ryu S, Pan J (2008) The diversity of lysine-acetylated proteins in Escherichia coli. J Microbiol Biotechnol 18:1529–1536

    CAS  PubMed  Google Scholar 

  • Zhang J, Sprung R, Pei J, Tan X, Kim S, Zhu H, Liu C-F, Grishin NV, Zhao Y (2009) Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol Cell Proteomics 8:215–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang K, Zheng S, Yang JS, Chen Y, Cheng Z (2013) Comprehensive profiling of protein lysine acetylation in Escherichia coli. J Proteome Res 12:844–851

    Article  CAS  PubMed  Google Scholar 

  • Zhao K, Chai X, Marmorstein R (2004) Structure and substrate binding properties of cobB, a Sir2 homolog protein deacetylase from Escherichia coli. J Mol Biol 337:731–741

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the NIGMS (R01 GM066130) and the DOE (DE-SC00124430. I would like to acknowledge my collaborators, Bradford Gibson, Wayne Anderson and Christopher Rao, as well as present and former members of my laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan J. Wolfe.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolfe, A.J. Bacterial protein acetylation: new discoveries unanswered questions. Curr Genet 62, 335–341 (2016). https://doi.org/10.1007/s00294-015-0552-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-015-0552-4

Keywords

Navigation