Skip to main content
Log in

Characterization of complete mitochondrial genome of Dezhou donkey (Equus asinus) and evolutionary analysis

  • Original Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Mitochondrial DNA (mtDNA) has been widely used in species identification and genetic diversification. Comparisons among mtDNAs of closely related species are valuable for phylogenetic studies. However, only the partial mtDNA Cytb gene and the D-loop sequences were used to analysis the phylogenetic relationship between donkey breeds due to lack of complete mitochondrial genome. Dezhou donkey, as a bigger somatotype ass, is one of Chinese domestic donkey breeds, and used by many places as breeding stock. To further investigate the phylogenetic relationship of Dezhou donkey with other breeds, the complete mtDNA was firstly sequenced and de novo assembled using next generation sequence data from total genomic DNA. The genome was 16,813 bp in length (NCBI submission number: KT182635) and contained 13 protein coding genes, 2 ribosomal RNA genes, 25 transfer RNA genes, and 1 control region. Based on the novel complete mtDNA sequence, the sequences of 13 protein coding genes and 2 ribosomal RNA genes were amplifying in other 2 Dezhou donkeys and 3 Yunnan donkeys, respectively. The pattern of genetic variation in horse, wild ass and domestic donkeys among these 15 genes indicated the sequence polymorphisms. The more accurate phylogenetic relationships of donkey species (Dezhou donkey, Yunnan donkey and previously published donkeys) were first obtained using the combined sequences of 12S rRNA+16S rRNA+13 protein-coding genes. Molecular-based phylogeny supported the hypothesis that Chinese domestic donkey breeds may have originated from Somali wild ass, not from Asian wild ass by analyzing mitochondrial genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Achilli A, Olivier A, Soares P, Lancioni H et al (2012) Mitochondrial genomes from modern horses reveal the major haplogroups that underwent domestication. Proc Natl Acad Sci 109:2449–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Zhou F, Xiao H, Sha T, Wu S, Zhang Y (2006) Mitochondrial DNA diversity and population structure of four Chinese donkey breeds. Anim Genet 37:422–431

    Article  Google Scholar 

  • Hegedusova E, Brejova B, Tomaska L, Sipiczki M, Nosek J (2014) Mitochondrial genome of the basidiomycetous yeast Jaminaea angkorensis. Curr Genet 60:49–59. doi:10.1007/s00294-013-0410

    Article  CAS  PubMed  Google Scholar 

  • Iorizzo M, Senalik D, Szklarczyk M, Grzebelus D, Spooner D, Simon P (2012) De novo assembly of the carrot mitochondrial genome using next generation sequencing of whole genomic DNA provides first evidence of DNA transfer into an angiosperm plastid genome. BMC Plant Biol 12:61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonsson H, Schubert M, Orlando A, Ginolhac A, Petersen L et al (2014) Speciation with gene flow in equids despite extensive chromosomal plasticity. Proc Natl Acad Sci 111:18655–18660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumeta Y, Maruyama T, Asama H, Yamamoto Y, Hakamatsuka T, Goda Y (2014) Species identification of Asini Corii Collas (donkey glue) by PCR amplification of cytochrome b gene. J Nat Med 68:181–185

    Article  CAS  PubMed  Google Scholar 

  • Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Yang H, Wang J, Wang J (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20:265–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lippold S, Matzke J, Reissmann M, Hofreiter M (2011) Whole mitochondrial genome sequencing of domestic horses reveals incorporation of extensive wild horse diversity during domestication. BMC Evol Biol 11:328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Pang SJ (2015) Mitochondrial genome of Turbinaria ornate (Sargassaceae, Phaeophyceae): comparative mitogenomics of brown algae. Curr Genet. doi:10.1007/s00294-015-0488-8

    Google Scholar 

  • Lohse M, Drechsel O, Kahlau S, Bock R (2013) Organellar Genome DRAW- a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res 41:575–581

    Article  Google Scholar 

  • Mendez J, Pereira A, Avellanet R, Dzama K, Jordana J (2004) Mitochondrial DNA variation and genetic relationships in Spanish donkey breeds (Equus asinus). J Anim Breed Genet 121:319–330

    Article  Google Scholar 

  • Mindell D, Sorenson M, Dimcheff D (1998) An extra nucleotide is not translated in mitochondrial ND3 of some birds and turtles. Mol Biol Evol 15:1568–1571

    Article  CAS  PubMed  Google Scholar 

  • Oakenfull E, Lim H, Ryder O (2000) A survey of equid mitochondrial DNA: implication for the evolution, genetic diversity and conservation of Equus. Conserv Genet 1:341–355

    Article  CAS  Google Scholar 

  • Pereira A, England P, Ferrand N, Jordan S, Bakhiet A, Abdalla M et al (2004) African origins of the domestic donkey. Science 304:1781

    Article  Google Scholar 

  • Smith D, Pearson R (2005) A review of the factors affecting the survival of donkeys in semi-arid regions of Sub-Saharan Africa. Trop Anim Health Pro 37:1–19

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka Y, Tsuda M, Yasumoto K, Terachi T, Yamagishi H (2014) The complete mitochondrial genome sequence of Brassica oleracea and analysis of coexisting mitotypes. Curr Genet 60:277–284. doi:10.1007/s00294-014-0433-2

    Article  CAS  PubMed  Google Scholar 

  • Valach M, Pryszcz L, Tomaska L, Gacser A, Gabaldon T, Nosek J (2012) Mitochondrial genome variability within the Candida parapsilosis species complex. Mitochondrion 12:514–519

    Article  CAS  PubMed  Google Scholar 

  • Vilstrup J, Orlando A, Stiller M, Ginolhac A, Raghavan M, Nielsen S, Weinstock J et al (2013) Mitochondrial phylogenomics of modern and ancient equids. PLoS ONE 8:e55950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson R (1990) The donkey. In: Payne WJA (ed) An introduction to animal husbandry in the tropics, pp 581–603

  • Wyman S, Jansen R, Boore J (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252–3255

    Article  CAS  PubMed  Google Scholar 

  • Xie C (1987) Horse and Ass Breeds in China. Shanghai Science and Technology Press, Shanghai

    Google Scholar 

  • Xu XF, Arnason U (1994) The complete mitochondrial DNA sequence of the horse, Equus caballus: extensive heteroplasmy of the control region. Gene 148:357–362

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Gullberg A, Arnason U (1996) The complete mitochondrial DNA (mtDNA) of the donkey and mtDNA comparisons among four closely related mammalian species-pairs. J Mol Evol 43:438–446

    Article  CAS  PubMed  Google Scholar 

  • Zhang BW (2011) China National Commission of Animal Genetic Resources. Animal genetic resources in China: Horses, Donkeys, Camels. China Agricultural Press, China

    Google Scholar 

  • Zhang Y, Xie Z, Xie L, Tan W, Liu J, Deng X, Xie Z et al (2014) Analysis of the Rongshui Xiang duck (Anseriformes, Anatidae, Anas) mitochondrial DNA. Mitochondrial DNA. doi:10.3109/19401736.2014.971263

    Google Scholar 

  • Zhao L, Liu GH, Zhao GH, Cai JZ, Zhu XQ, Qian AD (2015) Genetic differences between Chaberti aovina and C. erschowi revealed by sequence analysis of four mitochondrial genes. Mitochondrial DNA. doi:10.3109/19401736.2013.843089

    Google Scholar 

Download references

Acknowledgments

This study was supported by Natural Science Foundation of Shandong Province (Grant No. ZR2015PC010), the Agriculture Major Innovation Project in Shandong province, Well-bred Program of Shandong Province (Grant no. 2014LZ), and Joint Innovation Funds of Dong E E Jiao and Shandong Academy of Agricultural Sciences. The authors alone are responsible for the content and writing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changfa Wang.

Additional information

Communicated by M. Kupiec.

Y. Sun and Q. Jiang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1881 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Jiang, Q., Yang, C. et al. Characterization of complete mitochondrial genome of Dezhou donkey (Equus asinus) and evolutionary analysis. Curr Genet 62, 383–390 (2016). https://doi.org/10.1007/s00294-015-0531-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-015-0531-9

Keywords

Navigation