Skip to main content

Advertisement

Log in

Genetic transformation of Diaporthe phaseolorum, an endophytic fungus found in mangrove forests, mediated by Agrobacterium tumefaciens

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

We describe the genetic transformation of the mycelial tissue of Diaporthe phaseolorum, an endophytic fungus isolated from the mangrove species Laguncularia racemosa, using Agrobacterium tumefaciens-mediated transformation (ATMT). ATMT uses both the hygromycin B resistant (hph) gene and green fluorescent protein as the selection agents. The T-DNA integration into the fungal genome was assessed by both PCR and Southern blotting. All transformants examined were mitotically stable. An analysis of the T-DNA flanking sequences by thermal asymmetric interlaced PCR (TAIL-PCR) demonstrated that the disrupted genes in the transformants had similarities with conserved domains in proteins involved in antibiotic biosynthesis pathways. A library of 520 transformants was generated, and 31 of these transformants had no antibiotic activity against Staphylococcus aureus, an important human pathogen. The protocol described here, using ATMT in D. phaseolorum, will be useful for the identification and analysis of fungal genes controlling pathogenicity and antibiotic pathways. Moreover, this protocol may be used as a reference for other species in the Diaporthe genus. This is the first report to describe Agrobacterium-mediated transformation of D. phaseolorum as a tool for insertional mutagenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abello J, Kelemu S, García C (2008) Agrobacterium-mediated transformation of the endophytic fungus Acremonium implicatum associated with Brachiaria grasses. Mycol Res 112:407–413

    Article  PubMed  CAS  Google Scholar 

  • Amey RC, Athey-Pollard A, Burns C, Mills PR, Bailey A, Foster GD (2002) PEG-mediated and Agrobacterium-mediated transformation in the mycopathogen Verticillium fungicola. Mycol Res 106:4–11

    Article  Google Scholar 

  • Araújo WL, Maccheroni Jr W, Aguillar-Vildoso CI, Barroso PAV, Saridkis HO, Azevedo JL (2001) Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Can J Microbiol 47:229–236

    Google Scholar 

  • Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66

    Article  Google Scholar 

  • Ash GJ, Stodart B, Sakuanrungsirikul S, Anschaw E, Crump N, Hailstones D, Harper JD (2010) Genetic characterization of a novel Phomopsis sp., a putative biocontrol agent for Carthamus lanatus. Mycologia 102:54–61

    Article  PubMed  CAS  Google Scholar 

  • Badola R, Primavera JH, Barbier E, Dahdouh-Guebas F (2008) Ethnobiology, socio-economics and management of mangrove forests: a review. Aquatic Bot 89:220–236

    Article  Google Scholar 

  • Bandre TR, Sasek V (1977) Antibiotic activity of pyrenomycetes under submerged conditions. Folia Microbiol 22:269–274

    Article  CAS  Google Scholar 

  • Bergmann S, Schumann J, Scherlach K, Lange C, Brakhage AA, Hertweck C (2007) Genomics-driven discovery of PKS–NRPS hybrid metabolites from Aspergillus nidulans. Nat Chem Biol 3:213–217

    Article  PubMed  CAS  Google Scholar 

  • Biek D, Critchley IA, Riccobene TA, Thye DA (2010) Ceftaroline fosamil: a novel broad-spectrum cephalosporin with expanded anti-Gram-positive activity. J Antimicrob Chemother 65:9–16

    Article  Google Scholar 

  • Brakhage AA, Caruso ML (2004) Biotechnical genetics of antibiotic biosynthesis. In: Brakhage AA, Caruso ML (eds) The mycota II genetic and biotechnology, 4th edn. Springer, London, pp 317–353

    Google Scholar 

  • Brakhage AA, Schuemann J, Bergmann S, Scherlack K, Schroeckh V, Hertweck C (2008) Activation of fungal silent gene clusters: a new avenue to drug discovery. Prog Drug Res 66:3–12

    Google Scholar 

  • Bumpus SB, Evans BS, Thomas PM, Ntai I, Kelleher NL (2009) A proteomics approach to discovery of natural products and their biosynthetic pathways. Nat Biotechnol 27:951–956

    Article  PubMed  CAS  Google Scholar 

  • Campoy S, Perez F, Martin JF, Gutierrez S, Liras P (2003) Stable transformants of the azaphilone pigment-producing Monascus purpureus obtained by protoplast transformation and Agrobacterium-mediated DNA transfer. Curr Genet 43:447–452

    Article  PubMed  CAS  Google Scholar 

  • Capriles CH, Mata S, Middelveen M (1989) Preservation of fungi in water (Castellani): 20 years. Mycopathogia 106:73–79

    Article  Google Scholar 

  • Cardoza RE, Vizcaino JA, Hermosa MR, Monte E, Gutiérrez S (2006) A comparison of the phenotypic and genetic stability of recombinant Trichoderma sp. generated by protoplast- and Agrobacterium-mediated transformation. J Microbiol 44:383–395

    PubMed  CAS  Google Scholar 

  • Casas-Flores S, Rosales-Saavedra T, Herrera-Estrella A (2004) Three decades of fungal transformation: novel technologies. In: Paulina B, Argelia L (eds) Recombinant gene expression: reviews and protocols, 22nd edn. Humana Press, New York, pp 315–325

    Chapter  Google Scholar 

  • Chen XL, Yang J, Peng YL (2011) Large-scale insertional mutagenesis in Magnaporthe oryzae by Agrobacterium tumefaciens-mediated transformation. Methods Mol Biol 722:213–224

    Article  PubMed  Google Scholar 

  • Covert SF, Kapoor P, Lee M, Briley A, Nairn CJ (2001) Agrobacterium tumefaciens-mediated transformation of Fusarium circinatum. Mycol Res 105:259–264

    Article  CAS  Google Scholar 

  • Dai J, Krohn K, Floerke U, Gehle D, Aust HJ, Draeger S, Schulz B, Rheinheimer J (2005) Novel highly substituted biraryl ethers, phomopsines D-G, isolated from endophytic fungus Phomopsis sp. from Adenocarpus foliolosus. Eur J Org Chem 23:5100–5105

    Article  Google Scholar 

  • Das S, Lyla PS, Khan A (2006) Marine microbial diversity and ecology: importance and future perspectives. Curr Sci 90:1325–1334

    CAS  Google Scholar 

  • De Groot MJA, Bundock P, Hooykaas PJJ, Beijersbergen AGM (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16:839–842

    Article  PubMed  Google Scholar 

  • Dettrakul S, Kittakoop P, Isaka M, Nopichai S, Suyarnsestakorn C, Tanticharoen M, Thebtaranonth Y (2003) Antimycobacterial pimarane diterpenes from the fungus Diaporthe sp. Bioorgan Med Chem Lett 7:1253–1255

    Article  Google Scholar 

  • Elsaesser B, Krohn K, Floerke U, Root N, Aust HJ, Draeger S, Schulz B, Antus S, Kurtan T (2005) X ray structure determination absolute configuration and biological activity of phomoxanthone A. Eur J Org Chem 21:4563–4570

    Article  Google Scholar 

  • Fávaro LCL (2009) Diversity and interaction between Epicoccum spp. and sugarcane (Saccharum officinarum L.). In: Genetics and plant breeding, Doctoral thesis. “Luiz de Queiroz” College of Agriculture, University of São Paulo

  • Fernández-Ábalos JM, Fox H, Pitt C, Wells B, Doonan JH (1998) Plant-adapted green fluorescent protein is a versatile vital reporter for gene expression, protein localization and mitosis in the filamentous fungus, Aspergillus nidulans. Mol Microbiol 27:121–130

    Article  PubMed  Google Scholar 

  • Figueiredo JG, Goulin EH, Tanaka F, Stringari D, Kava-Cordeiro V, Galli-Terasawa LV, Staats CC, Schrankand A, Glienke C (2010) Agrobacterium tumefaciens-mediated transformation of Guignardia citricarpa. J Microbiol Methods 80:143–147

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald AM, Mudge AM, Gleave AP, Plummer KM (2003) Agrobacterium and PEG-mediated transformation of the phytopathogen Venturia inaequalis. Mycol Res 107:803–810

    Article  PubMed  CAS  Google Scholar 

  • Floss HG (2006) Combinatorial biosynthesis—potential and problems. J Biotechnol 124:242–257

    Article  PubMed  CAS  Google Scholar 

  • Foster T (1996) Medical microbiology. University of Texas Medical Branch, Galveston

    Google Scholar 

  • Fox EM, Howlett BJ (2008) Secondary metabolism: regulation and role in fungal biology. Curr Opin Microbiol 11:481–487

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Ruiz A, Beiras-Fernandez A, Lehmkuhl H, Andrew Seaton R, Loeffler J, Chave R (2011) Clinical experience with daptomycin in Europe: the first 2.5 years. J Antimicrob Chemother 66:912–919

    Article  PubMed  CAS  Google Scholar 

  • Gopal B, Chauhan M (2006) Biodiversity and its conservation in the Sundarban Mangrove Ecosystem. Aquat Sci 68:338–354

    Article  Google Scholar 

  • Gorfer M, Klaubauf S, Bandian D, Strauss J (2007) Cadophora finlandia and Phialocephala fortinii: Agrobacterium-mediated transformation and functional GFP expression. Mycol Res 111:850–855

    Article  PubMed  CAS  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  • Huang Z, Cai X, Shao C, She Z, Xia X, Chen Y, Yang J, Zhou S, Lin Y (2008) Chemistry and weak antimicrobial activities of phomopsins produced by mangrove endophytic fungus Phomopsis sp. ZSU-H76. Phytochemistry 69:1604–1608

    Article  PubMed  CAS  Google Scholar 

  • Huang T, Wang Y, Yin J, Du Y, Tao M, Xu J, Chen W, Lin S, Deng Z (2011) Identification and characterization of the Pyridomycin biosynthetic gene cluster of Streptomyces pyridomyceticus NRRL B-2517. J Biol Chem 20:1–16

    Google Scholar 

  • Ichikawa T, Date M, Ishikura T, Ozaki A (1971) Improvement of kasugamycin-producing strain by the agar piece method and protroph method. Folia Microbiol 16:218–224

    Article  CAS  Google Scholar 

  • Isaka M, Jaturapat A, Rukseree K, Danwisethanjana K, Tanticharoen M, Thebtaranonth Y (2001) Phomoxanthones A and B, novel xanthone dimmers from the endophytic fungus Phomopsis species. J Nat Prod 64:1015–1018

    Article  PubMed  CAS  Google Scholar 

  • Jeon J, Park SY, Chi MH, Choi J, Park J, Rho HS, Kim S, Goh J, Yoo S, Choi J, Park JY, Yi M, Yang S, Kwon MJ, Han SS, Kim BR, Khang CH, Park B, Lim SE, Jung K, Kong S, Karunakaran M, Oh HS, Kim H, Kim S, Park J, Kang S, Choi WB, Kang S, Lee YH (2007) Genome-wide functional analysis of pathogenicity genes in the rice blast fungus. Nat Genet 39:561–565

    Google Scholar 

  • Jones AC, Monroe EA, Eisman EB, Gerwick L, Sherman DH, Gerwick WH (2010) The unique mechanistic transformations involved in the biosynthesis of modular natural products from marine cyanobacteria. Nat Prod Rep 27:1048–1065

    Article  PubMed  CAS  Google Scholar 

  • Karunakaran M, Nair V, Rho H, Choi J, Kim S, Lee Y (2008) Agrobacterium tumefaciens mediated transformation in Colletotrichum falcatum and C. acutatum. Journal of Microbiology and Biotechnology 18:234–241

    Google Scholar 

  • Kathiresan K, Bingham BL (2001) Biology of mangroves and mangrove ecosystems. Adv Marine Biol 40:81–251

    Article  Google Scholar 

  • Kobayashi H, Meguro S, Yoshimoto T, Namikoshi M (2003) Absolute structure, biosynthesis, and anti-microtubule activity of phomopsidin, isolated from a marine derived fungus Phomopsis sp. Tetrahedron 59:455–459

    Article  CAS  Google Scholar 

  • Kudo F, Yonezawa T, Komatsubara A, Mzoue K, Eguchi T (2011) Cloning of the biosynthetic gene cluster for naphthoxanthene antibiotic FD-594 from Streptomyces sp. TA-0256. J Antibiot 4:123–132

    Article  Google Scholar 

  • Lacroix B, Tzfira T, Vainstein A, Citovsky V (2006) A case of promiscuity: Agrobacterium’s endless hunt for new partners. Trends Genet 22:29–37

    Article  PubMed  CAS  Google Scholar 

  • Li MY, Xiao Q, Pan JY, Wu J (2009) Natural products from semi-mangrove flora: source, chemistry and bioactivities. Nat Prod Rep 26:281–298

    Article  PubMed  Google Scholar 

  • Lin X, Huang Y, Fang M, Wang J, Zheng Z, Su W (2005) Cytotoxic and antimicrobial metabolites from marine lignicolous fungi, Diaporthe sp. FEMS Microbiol Lett 251:53–58

    Article  PubMed  CAS  Google Scholar 

  • Liu YG, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8:457–463

    Article  PubMed  CAS  Google Scholar 

  • Maciá-Vicente JG, Jansson HB, Talbot NJ, Lopez-Llorca LV (2009) Real-time PCR quantification and live-cell imaging of endophytic colonization of barley (Hordeum vulgare) roots by Fusarium equiseti and Pochonia chlamydosporia. New Phytol 182:213–228

    Article  PubMed  Google Scholar 

  • Martino E, Murat C, Vallino M, Bena A, Perotto S, Spanu P (2007) Imaging mycorrhizal fungal transformants that express e GFP during ericoid endosymbiosis. Curr Genet 52:65–75

    Article  PubMed  CAS  Google Scholar 

  • Mata MM, Taniwaki MH, Iamanaka BT, Sartori D, Oliveira ALM, Furlaneto MC, Fungaro MHP (2007) Agrobacterium-mediated insertional mutagenesis of the ochratoxigenic fungus Aspergillus westerdijkiae. Can J Microbiol 53:148–151

    Article  PubMed  CAS  Google Scholar 

  • Mattheus W, Gao L, Herdewijn P, Landuyt B, Verhaegen J, Masschelein JG, Lavigne1 R (2010) Isolation and purification of a new Kalimantacin/Batumin-related polyketide antibiotic and elucidation of its biosynthesis gene cluster. Chem Biol 17:149–159

    Google Scholar 

  • Meyer V (2007) Genetic engineering of filamentous fungi—progress, obstacles and future trends. Biotechnol Adv 26:177–185

    Article  PubMed  Google Scholar 

  • Michielse CB, Hooykaas PJ, Van Den Hondel CA, Ram AF (2005) Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet 48:1–17

    Article  PubMed  CAS  Google Scholar 

  • Mikosch TS, Lavrijssen B, Sonnenberg AS, Van Griensven LJ (2001) Transformation of the cultivated mushroom Agaricus bisporus (Lange) using T-DNA from Agrobacterium tumefaciens. Curr Genet 39:35–39

    Article  PubMed  CAS  Google Scholar 

  • Moon YS, Donzelli BGG, Krasnoff SB, Mclane H, Griggs MH, Cooke P, Vandenberg JD, Gibson DM, Churchill ACL (2008) Agrobacterium-mediated disruption of a nonribosomal peptide synthetase gene in the invertebrate pathogen Metarhizium anisopliae reveals a peptide spore factor. Appl Environ Microbiol 74:4366–4380

    Article  PubMed  CAS  Google Scholar 

  • Morioka LR, Furlaneto MC, Bogas AC, Pompermayer OS, Duarte RT, Carneiro ML, Watanabe MAE, Fungaro MHP (2006) Efficient genetic transformation system for the ochratoxigenic fungus Aspergillus carbonarius. Curr Microbiol 52:469–472

    Article  PubMed  CAS  Google Scholar 

  • Müller T, Benjdia M, Avolio M, Voigt B, Menzel D, Pardo A, Frommer WB, Wipf D (2006) Functional expression of the green fluorescent protein in the ectomycorrhizal model fungus Hebeloma cylindrosporum. Mycorrhiza 16:437–442

    Article  PubMed  Google Scholar 

  • Mullins ED, Chen X, Romaine CP, Raina R, Geiser DM, Kang S (2001) Agrobacterium-mediated transformation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer. Phytopathology 91:173–180

    Article  PubMed  CAS  Google Scholar 

  • Nguyen VQ, Sil A (2008) Temperature-induced switch to the pathogenic yeast form of Histoplasma capsulatum requires Ryp1, a conserved transcriptional regulator. PNAS 105:4880–4885

    Google Scholar 

  • Qu X, Jiang N, Xu F, Shao L, Tang G, Wilkinson B, Liu W (2011) Cloning, sequencing and characterization of the biosynthetic gene cluster of sanglifehrin A, a potent cyclophilin inhibitor. Mol Biosyst 3:852–861

    Article  Google Scholar 

  • Raeder U, Broda P (1985) Rapid preparation of DNA from filamentous fungi. Lett Appl Microbiol 1:17–20

    Article  CAS  Google Scholar 

  • Redman RS, Dunigan DD, Rodriguez RJ (2001) Fungal symbiosis: from mutualism to parasitism, who controls the outcome, host or invader? New Phytol 151:705–716

    Article  Google Scholar 

  • Reis MC, Fungaro MHP, Duarte RTD, Furlaneto L, Furlaneto MC (2004) Agrobacterium tumefaciens-mediated genetic transformation of the entomopathogenic fungus Beauveria bassiana. J Microbiol Methods 58:197–202

    Article  PubMed  Google Scholar 

  • Rodriguez E, Mcdaniel R (2001) Combinatorial biosynthesis of antimicrobials and other natural products. Curr Opin Microbiol 4:526–534

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Tovar AV, Ruiz-Medrano R, Herrera-Martínez A, Barrera-Figueroa BE, Hidalgo-Lara ME, Reyes-Márquez BE, Cabrera-Ponce JL, Valdéz M, Xoconostle-Cázares B (2005) Stable genetic transformation of the ectomycorrhizal fungus Pisolithus tinctorius. J Microbiol Methods 63:45–54

    Article  PubMed  Google Scholar 

  • Rogers CW, Challen MP, Green JR, Whipps JM (2004) Use of REMI and Agrobacterium-mediated transformation to identify pathogenicity mutants of the biocontrol fungus, Coniothyrium minitans. FEMS Microbiol Lett 241:207–214

    Article  PubMed  CAS  Google Scholar 

  • Rolland S, Jobic C, Fèvre M, Bruel C (2003) Agrobacterium-mediated transformation of Botrytis cinerea, simple purification of monokaryotic transformants and rapid conidia-based identification of the transfer-DNA host genomic DNA flanking sequences. Curr Genet 44:164–171

    Article  PubMed  CAS  Google Scholar 

  • Sacido AA, Genilloud O (2005) New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes: Detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microb Ecol 49:10–24

    Article  Google Scholar 

  • Schneider G (2005) Enzymes in the biosynthesis of aromatic polyketide antibiotics. Curr Opin Struct Biol 15:629–636

    Article  PubMed  CAS  Google Scholar 

  • Schulz B, Guske S, Dammann U, Boyle C (1998) Endophyte–host interactions II—defining symbiosis of the endophyte–host interaction. Symbiosis 25:213–227

    Google Scholar 

  • Schulz B, Rommert AK, Dammann U, Aust HJ, Strack D (1999) The endophyte–host interaction: a balanced antagonism? Mycol Res 10:1275–1283

    Article  Google Scholar 

  • Schulz B, Boyle C, Draeger S, Römmert AK, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004

    Article  CAS  Google Scholar 

  • Sieber TN (2007) Endophytic fungi in forest trees: are they mutualists? Fungal Biol Rev 21:75–89

    Article  Google Scholar 

  • Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB, Sasse F, Jansen R, Murali TS (2009) Fungal endophytes and bioprospecting. Fungal Biol Rev 23:9–19

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar SM (2007) Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Tang GL, Cheng YQ, Shen B (2006) Polyketide chain skipping mechanism in the biosynthesis of the hybrid nonribosomal peptide-polyketide antitumor antibiotic leinamycin in Streptomyces atroolivaceus S-140. J Nat Prod 69:387–393

    Article  PubMed  CAS  Google Scholar 

  • Vijn I, Govers F (2003) Agrobacterium tumefaciens mediated transformation of the oomycete plant pathogen Phytophthora infestans. Mol Plant Pathol 4:459–467

    Article  PubMed  CAS  Google Scholar 

  • Walkerpeach CR, Velten J (1994) Agrobacterium-mediated gene transfer to plant cells: cointegrate and binary vector systems. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual, 4th edn. Kluwer, Dordrecht, pp 1–19

    Google Scholar 

  • Walsh CT (2004) Polyketide and nonribosomal peptide antibiotics: modularity and versatility. Science 303:1805–1810

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Li H (2008) Agrobacterium tumefaciens mediated genetic transformation of the phytopatogenic fungus Penicillium digitatum. J Zhejiang Univ Sci 10:823–828

    Google Scholar 

  • Wells JM, Cutler HG, Cole RJ (1976) Toxicity and plant growth regulator effects of cytochalasin H isolated from Phomopsis sp. Can J Microbiol 22:1137–1143

    Article  PubMed  CAS  Google Scholar 

  • Yuan JI, Jian-Nan BI, Bing Y, Xu-Dong Z (2006) Taxol-producing fungi: a new approach to industrial production of taxol. Chin J Biotechnol 22:1–6

    Article  CAS  Google Scholar 

  • Zeilinger S (2004) Gene disruption in Trichoderma atroviride via Agrobacterium-mediated transformation. Curr Genet 45:54–60

    Article  PubMed  CAS  Google Scholar 

  • Zhang A, Lu P, Dahl-Roshak AM, Paress PS (2003) Efficient disruption of a polyketide synthase gene (pks1) required for melanin synthesis through Agrobacterium-mediated transformation of Glarea lozoyensis. Mol Genet Genom 268:645–655

    CAS  Google Scholar 

  • Zhang Y, Li G, He D, Yu B, Yokoyama K, Wang L (2011) Efficient insertional mutagenesis system for the dimorphic pathogenic fungus Sporothrix schenckii using Agrobacterium tumefaciens. J Microbiol Methods 84:418–422

    Article  PubMed  CAS  Google Scholar 

  • Zheng Z, Huang C, Cao L, Xie C, Han R (2010) Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in medicinal fungus Cordyceps militaris. Fungal Biol 115:265–274

    Article  PubMed  Google Scholar 

  • Zhong YH, Wang XL, Wang TH, Jiang Q (2007) Agrobacterium-mediated transformation (AMT) of Trichoderma reesei as an efficient tool for random insertional mutagenesis. Appl Microbiol Biotechnol 73:1348–1354

    Article  PubMed  CAS  Google Scholar 

  • Zhong-Shan C, Wen-cheng T, Shu-lan X, Shi-feng S, Bo-You H, Xi Y, Qi-jin C, Yong-cheng L (2008) First report of an endophyte (Diaporthe phaseolorum var. sojae) from Kandelia candel. J For Res 19:277–282

    Article  Google Scholar 

  • Zhong-Shan C, Jia-Hui P, Wen-Cheng T, Qi-Jin C, Yong-Cheng L (2009) Biodiversity and biotechnological potential of mangrove associated fungi. J For Res 20:63–72

    Article  Google Scholar 

  • Zwiers LH, De Waard MA (2001) Efficient Agrobacterium tumefaciens-mediated gene disruption in the phytopathogen Mycosphaerella graminicola. Curr Genet 39:388–393

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the FAPESP/BIOTA (Grant 04/13910-6 and fellowship 06/57060-1 awarded to PTL) and CNPq (fellowship awarded to F.L.S.S.). We thank Dr. K. M. Plummer (La Trobe University, Australia) for providing the pFAT-gfp plasmid to L.C.L.F, and Dr. M.L.R. Aguiar-Perecin and Dr. A. Ferreira for their help with fluorescence microscopy analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo T. Lacava.

Additional information

Communicated by J. Heitman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sebastianes, F.L.S., Lacava, P.T., Fávaro, L.C.L. et al. Genetic transformation of Diaporthe phaseolorum, an endophytic fungus found in mangrove forests, mediated by Agrobacterium tumefaciens . Curr Genet 58, 21–33 (2012). https://doi.org/10.1007/s00294-011-0362-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-011-0362-2

Keywords

Navigation