Skip to main content
Log in

An inducible artificial microRNA system for Chlamydomonas reinhardtii confirms a key role for heat shock factor 1 in regulating thermotolerance

  • Technical Note
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Several RNA silencing strategies employing antisense or inverted repeat constructs have been applied to Chlamydomonas reinhardtii. Problems inherent to these strategies, like off-target effects by unpredictable generation of siRNAs, were solved previously by constructs allowing for routine expression of specific artificial microRNAs (amiRNAs). Yet missing was a routine tool for inducible amiRNA expression, which to establish was the aim of this work. For this, we equipped a recently developed amiRNA expression vector with the NIT1 promoter, which is repressed by ammonium and activated by nitrate. We tested this conditional amiRNA vector with heat shock factor 1 (HSF1) as target. HSF1 transcripts in transformants were already reduced ~2 h after transfer from ammonium to nitrate-containing medium. In contrast, HSF1 protein levels declined only ~8 h after the shift and were strongly reduced after 24 h, suggesting that HSF1 is a stable protein and diluted out by growth. HSF1 levels recovered partly when transformant cells were shifted back to ammonium for 72 h. Transformants developed thermosensitivity only on nitrate and thermosensitivity correlated with strong reduction in HSF1 levels, hence supporting our earlier conclusion that HSF1 is a key regulator for thermotolerance in Chlamydomonas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Camargo A, Llamas A, Schnell RA, Higuera JJ, Gonzalez-Ballester D, Lefebvre PA, Fernandez E, Galvan A (2007) Nitrate signaling by the regulatory gene NIT2 in Chlamydomonas. Plant Cell 19:3491–3503

    Article  PubMed  CAS  Google Scholar 

  • Fernandez E, Schnell R, Ranum LP, Hussey SC, Silflow CD, Lefebvre PA (1989) Isolation and characterization of the nitrate reductase structural gene of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 86:6449–6453

    Article  PubMed  CAS  Google Scholar 

  • Harris EH (2008) The Chlamydomonas sourcebook: introduction to Chlamydomonas and its laboratory use, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Kindle KL (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 87:1228–1232

    Article  PubMed  CAS  Google Scholar 

  • Koblenz B, Lechtreck KF (2005) The NIT1 promoter allows inducible and reversible silencing of centrin in Chlamydomonas reinhardtii. Eukaryot Cell 4:1959–1962

    Article  PubMed  CAS  Google Scholar 

  • Kucho K, Ohyama K, Fukuzawa H (1999) CO(2)-responsive transcriptional regulation of CAH1 encoding carbonic anhydrase is mediated by enhancer and silencer regions in Chlamydomonas reinhardtii. Plant Physiol 121:1329–1338

    Article  PubMed  CAS  Google Scholar 

  • Lemaire C, Wollman FA (1989) The chloroplast ATP synthase in Chlamydomonas reinhardtii. I. Characterization of its nine constitutive subunits. J Biol Chem 264:10228–10234

    PubMed  CAS  Google Scholar 

  • Liu C, Willmund F, Whitelegge JP, Hawat S, Knapp B, Lodha M, Schroda M (2005) J-domain protein CDJ2 and HSP70B are a plastidic chaperone pair that interacts with vesicle-inducing protein in plastids 1. Mol Biol Cell 16:1165–1177

    Article  PubMed  CAS  Google Scholar 

  • Lodha M, Schulz-Raffelt M, Schroda M (2008) A new assay for promoter analysis in Chlamydomonas reveals roles for heat shock elements and the TATA box in HSP70A promoter-mediated activation of transgene expression. Eukaryot Cell 7:172–176

    Article  PubMed  CAS  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, Marshall WF, Qu LH, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen CL, Cognat V, Croft MT, Dent R, Dutcher S, Fernandez E, Fukuzawa H, Gonzalez-Ballester D, Gonzalez-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral JP, Riano-Pachon DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen CJ, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo Y, Martinez D, Ngau WC, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Grigoriev IV, Rokhsar DS, Grossman AR (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250

    Article  PubMed  CAS  Google Scholar 

  • Molnar A, Schwach F, Studholme DJ, Thuenemann EC, Baulcombe DC (2007) miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature 447:1126–1129

    Article  PubMed  CAS  Google Scholar 

  • Molnar A, Bassett A, Thuenemann E, Schwach F, Karkare S, Ossowski S, Weigel D, Baulcombe D (2009) Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii. Plant J 58:165–174

    Google Scholar 

  • Moore I, Samalova M, Kurup S (2006) Transactivated and chemically inducible gene expression in plants. Plant J 45:651–683

    Article  PubMed  CAS  Google Scholar 

  • Ohresser M, Matagne RF, Loppes R (1997) Expression of the arylsulphatase reporter gene under the control of the nit1 promoter in Chlamydomonas reinhardtii. Curr Genet 31:264–271

    Article  PubMed  CAS  Google Scholar 

  • Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53:674–690

    Article  PubMed  CAS  Google Scholar 

  • Quesada A, Fernandez E (1994) Expression of nitrate assimilation related genes in Chlamydomonas reinhardtii. Plant Mol Biol 24:185–194

    Article  PubMed  CAS  Google Scholar 

  • Quinn JM, Kropat J, Merchant S (2003) Copper response element and Crr1-dependent Ni(2+)-responsive promoter for induced, reversible gene expression in Chlamydomonas reinhardtii. Eukaryot Cell 2:995–1002

    Article  PubMed  CAS  Google Scholar 

  • Sanchez Y, Lindquist SL (1990) HSP104 required for induced thermotolerance. Science 248:1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Schroda M (2004) The Chlamydomonas genome reveals its secrets: chaperone genes and the potential roles of their gene products in the chloroplast. Photosynth Res 82:221–240

    Article  PubMed  CAS  Google Scholar 

  • Schroda M (2006) RNA silencing in Chlamydomonas: mechanisms and tools. Curr Genet 49:69–84

    Article  PubMed  CAS  Google Scholar 

  • Schroda M, Vallon O, Wollman FA, Beck CF (1999) A chloroplast-targeted heat shock protein 70 (HSP70) contributes to the photoprotection and repair of photosystem II during and after photoinhibition. Plant Cell 11:1165–1178

    Article  PubMed  CAS  Google Scholar 

  • Schroda M, Blocker D, Beck CF (2000) The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. Plant J 21:121–131

    Article  PubMed  CAS  Google Scholar 

  • Schroda M, Beck CF, Vallon O (2002) Sequence elements within an HSP70 promoter counteract transcriptional transgene silencing in Chlamydomonas. Plant J 31:445–455

    Article  PubMed  CAS  Google Scholar 

  • Schulz-Raffelt M, Lodha M, Schroda M (2007) Heat shock factor 1 is a key regulator of the stress response in Chlamydomonas. Plant J 52:286–295

    Article  PubMed  CAS  Google Scholar 

  • Schulz-Raffelt M, Schmollinger S, Skupin A, Strenkert D, Veyel D, Vallon O, Ebenhöh O, Schroda M (2010) Dissection of the stress response in Chlamydomonas reveals a role for chloroplast HSP70B in stress signalling. Submitted

  • Willmund F, Schroda M (2005) HEAT SHOCK PROTEIN 90C is a bona fide Hsp90 that interacts with plastidic HSP70B in Chlamydomonas reinhardtii. Plant Physiol 138:2310–2322

    Article  PubMed  CAS  Google Scholar 

  • Xu P, Zhang Y, Kang L, Roossinck MJ, Mysore KS (2006) Computational estimation and experimental verification of off-target silencing during posttranscriptional gene silencing in plants. Plant Physiol 142:429–440

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki T, Miyasaka H, Ohama T (2008) Unstable RNAi effects through epigenetic silencing of an inverted repeat transgene in Chlamydomonas reinhardtii. Genetics 180:1927–1944

    Article  PubMed  CAS  Google Scholar 

  • Zhao T, Li G, Mi S, Li S, Hannon GJ, Wang XJ, Qi Y (2007) A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev 21:1190–1203

    Article  PubMed  CAS  Google Scholar 

  • Zhao T, Wang W, Bai X, Qi Y (2009) Gene silencing by artificial microRNAs in Chlamydomonas. Plant J 58:157–164

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Steve Miller for critically reading the manuscript, Attila Molnar for construct pChlamiRNA2 and helpful advice, and Olivier Vallon for the antiserum against CF1β. This work was supported by the Max Planck Society and grants from the Deutsche Forschungsgemeinschaft (Schr 617/5-1) and the Bundesministerium für Bildung und Forschung (Systems Biology Initiative FORSYS, project GoFORSYS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schroda.

Additional information

Communicated by A. Grossman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmollinger, S., Strenkert, D. & Schroda, M. An inducible artificial microRNA system for Chlamydomonas reinhardtii confirms a key role for heat shock factor 1 in regulating thermotolerance. Curr Genet 56, 383–389 (2010). https://doi.org/10.1007/s00294-010-0304-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-010-0304-4

Keywords

Navigation