Skip to main content
Log in

Performance of a tetracycline-responsive transactivator system for regulating transgenes in the oomycete Phytophthora infestans

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The oomycete genus Phytophthora includes many important plant pathogens for which extensive genome data exist, but lacking is an inducible expression system to study contributions of their genes to growth and pathogenicity. Here the adaptation of the reverse tetracycline transactivator (rtTA) system to P. infestans is described. Vectors were developed containing rtTA expressed from an oomycete promoter, and β-glucuronidase (GUS) controlled by TetR binding sites fused to a minimal oomycete promoter. Transformants were obtained in which GUS was expressed in a dose-dependent manner by the rtTA inducer doxycycline, indicating that the gene switch functions in P. infestans. However, toxicity of rtTA hindered the isolation of transformants if expressed on the same plasmid as the nptII selection marker. Better results were obtained by cotransforming those genes on separate plasmids, with 92% of transformants acquiring both DNAs although only 4% expressed rtTA at detectable levels. Low levels of reporter activity were measured in such transformants, suggesting that rtTA activated transcription weakly. Also, significant variation in the sensitivity of isolates to doxycycline and tetracycline was observed. These results are useful both in terms of developing tools for functional genomics and understanding the fate of DNA during Phytophthora transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ah Fong A, Judelson HS (2003) Cell cycle regulator Cdc14 is expressed during sporulation but not hyphal growth in the fungus-like oomycete Phytophthora infestans. Mol Microbiol 50:487–494

    Article  PubMed  CAS  Google Scholar 

  • Baldauf SL (2003) The deep roots of eukaryotes. Science 300:1703–1706

    Article  PubMed  CAS  Google Scholar 

  • Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10:411–421

    Article  PubMed  CAS  Google Scholar 

  • Bornkamm GW et al (2005) Stringent doxycycline-dependent control of gene activities using an episomal one-vector system. Nucleic Acids Res 33:e137

    Article  PubMed  CAS  Google Scholar 

  • Bottin A, Larche L, Villalba F, Gaulin E, Esquerre-Tugaye M-T, Rickauer M (1999) Green fluorescent protein (GFP) as gene expression reporter and vital marker for studying development and microbe-plant interaction in the tobacco pathogen Phytophthora parasitica var. nicotianae. FEMS Microbiol Lett 176:51–56

    Article  PubMed  CAS  Google Scholar 

  • Bryja V, Pachernik J, Kubala L, Hampl A, Dvorak P (2003) The reverse tetracycline-controlled transactivator rtTA2s-S2 is toxic in mouse embryonic stem cells. Reprod Nutr Dev 43:477–486

    Article  PubMed  CAS  Google Scholar 

  • Cvitanich C, Judelson HS (2003a) Stable transformation of the oomycete, Phytophthora infestans, using microprojectile bombardment. Curr Genet 42:228–235

    CAS  Google Scholar 

  • Cvitanich C, Judelson HS (2003b) A gene expressed during sexual and asexual sporulation in Phytophthora infestans is a member of the Puf family of translational regulators. Eukaryot Cell 2:465–473

    Article  CAS  Google Scholar 

  • Erwin DC, Ribeiro OK (1996) Phytophthora diseases worldwide. APS Press, St. Paul

    Google Scholar 

  • Freundlieb S, Schirra-Muller C, Bujard H (1999) A tetracycline controlled activation/repression system with increased potential for gene transfer into mammalian cells. J Gene Med 1:4–12

    Article  PubMed  CAS  Google Scholar 

  • Gill G, Ptashne M (1988) Negative effect of the transcriptional activator GAL4. Nature 334:721–724

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Couto E, Klages N, Strubin M (1997) Synergistic and promoter-selective activation of transcription by recruitment of transcription factors TFIID and TFIIB. Proc Natl Acad Sci USA 94:8036–8041

    Article  PubMed  CAS  Google Scholar 

  • Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 89:5547–5551

    Article  PubMed  CAS  Google Scholar 

  • Gossen M, Bujard H (2002) Studying gene function in eukaryotes by conditional gene inactivation. Ann Rev Genet 36:153–173

    Article  PubMed  CAS  Google Scholar 

  • Herrmann CH, Gold MO, Rice AP (1996) Viral transactivators specifically target distinct cellular protein kinases that phosphorylate the RNA polymerase II C-terminal domain. Nucleic Acids Res 24:501–508

    Article  PubMed  Google Scholar 

  • Ikeda K, Stuehler T, Meisterernst M (2002) The H1 and H2 regions of the activation domain of herpes simplex virion protein 16 stimulate transcription through distinct molecular mechanisms. Genes Cells 7:49–58

    Article  PubMed  CAS  Google Scholar 

  • Iyer V, Struhl K (1996) Absolute mRNA levels and transcriptional initiation rates in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 93:5208–5212

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) Gus fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3908

    PubMed  CAS  Google Scholar 

  • Jepson I, Martinez A, Sweetman JP (1998) Chemical-inducible gene expression system for plants: a review. Pest Sci 54:360–367

    Article  CAS  Google Scholar 

  • Judelson HS (1993) Intermolecular ligation mediates efficient cotransformation in Phytophthora infestans. Mol Gen Genet 239:241–250

    PubMed  CAS  Google Scholar 

  • Judelson HS (1996) Genetic and physical variability at the mating type locus of the oomycete, Phytophthora infestans. Genetics 144:1005–1013

    PubMed  CAS  Google Scholar 

  • Judelson HS, Michelmore RW (1991) Transient expression of genes in the oomycete Phytophthora infestans using Bremia lactucae regulatory sequences. Curr Genet 19:453–460

    Article  CAS  Google Scholar 

  • Judelson HS, Randall TA (1998) Families of repeated DNA in the oomycete Phytophthora infestans and their distribution within the genus. Genome 41:605–615

    Article  PubMed  CAS  Google Scholar 

  • Judelson HS, Roberts S (2002) Novel protein kinase induced during sporangial cleavage in the oomycete Phytophthora infestans. Eukaryot Cell 1:687–695

    Article  PubMed  CAS  Google Scholar 

  • Judelson HS, Senthil GS (2006) Investigating the role of ABC transporters in multifungicide insensitivity in Phytophthora infestans. Mol Plant Pathol 7:17–29

    Article  CAS  Google Scholar 

  • Judelson HS, Whittaker SL (1995) Inactivation of transgenes in Phytophthora infestans is not associated with their deletion, methylation, or mutation. Curr Genet 28:571–579

    Article  PubMed  CAS  Google Scholar 

  • Judelson HS, Tyler BM, Michelmore RW (1991) Transformation of the oomycete pathogen, Phytophthora infestans. Mol Plant Microbe Interact 4:602–607

    PubMed  CAS  Google Scholar 

  • Judelson HS, Tyler BM, Michelmore RW (1992) Regulatory sequences for expressing genes in oomycete fungi. Mol Gen Genet 234:138–146

    PubMed  CAS  Google Scholar 

  • Judelson HS, Coffey MD, Arredondo FR, Tyler BM (1993a) Transformation of the oomycete pathogen Phytophthora megasperma f. sp. glycinea occurs by DNA integration into single or multiple chromosomes. Curr Genet 23:211–218

    Article  CAS  Google Scholar 

  • Judelson HS, Dudler R, Pieterse CMJ, Unkles SE, Michelmore RW (1993b) Expression and antisense inhibition of transgenes in Phytophthora infestans is modulated by choice of promoter and position effects. Gene 133:63–69

    Article  CAS  Google Scholar 

  • Kim KS (2006) Molecular mechanisms governing the development of sporangia in the oomycete phytopathogen Phytophthora infestans. Ph D thesis, University of California

  • Latijnhouwers M, Ligterink W, Vleeshouwers VGAA, van West P, Govers F (2004) A G-alpha subunit controls zoospore motility and virulence in the potato late blight pathogen Phytophthora infestans. Mol Microbiol 51:925–936

    Article  PubMed  CAS  Google Scholar 

  • Laughon A, Gesteland RF (1982) Isolation and preliminary characterization of the gal-4 gene a positive regulator of transcription in yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 79:6827–6831

    Article  PubMed  CAS  Google Scholar 

  • Martin FN, Semer CR (1997) Selection of drug-tolerant strains of Pythium sylvaticum using sublethal enrichment. Phytopathology 87:685–692

    CAS  PubMed  Google Scholar 

  • McLeod A, Smart CD, Fry WE (2004) Core promoter structure in the oomycete Phytophthora infestans. Eukaryot Cell 3:91–99

    Article  PubMed  CAS  Google Scholar 

  • Neely KE et al (1999) Activation domain-mediated targeting of the SWI/SNF complex to promoters stimulates transcription from nucleosome arrays. Mol Cell 4:649–655

    Article  PubMed  CAS  Google Scholar 

  • Randall TA et al (2005) Large-scale gene discovery in the oomycete Phytophthora infestans reveals likely components of phytopathogenicity shared with true fungi. Mol Plant Microbe Interact 18:229–243

    PubMed  Google Scholar 

  • Sharp PM, Li WH (1987) The codon Adaptation Index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15:1281–1295

    Article  PubMed  CAS  Google Scholar 

  • Shockett P, Difilippantonio M, Hellman N, Schatz DG (1995) A modified tetracycline-regulated system provides autoregulatory, inducible gene expression in cultured cells and transgenic mice. Proc Natl Acad Sci USA 92:6522–6526

    Article  PubMed  CAS  Google Scholar 

  • Stebbins MJ, Urlinger S, Byrne G, Bello B, Hillen W, Yin JCP (2001) Tetracycline-inducible systems for Drosophila. Proc Natl Acad Sci USA 98:10775–10780

    Article  PubMed  CAS  Google Scholar 

  • Strathdee CA, McLeod MR, Hall JR (1999) Efficient control of tetracycline-responsive gene expression from an autoregulated bi-directional expression vector. Gene 229:21–29

    Article  PubMed  CAS  Google Scholar 

  • Tani S, Kim KS, Judelson HS (2005) A cluster of NIF transcriptional regulators with divergent patterns of spore-specific expression in Phytophthora infestans. Fungal Genet Biol 42:42–50

    Article  PubMed  CAS  Google Scholar 

  • Urlinger S, Baron U, Thellmann M, Hasan MT, Bujard H, Hillen W (2000) Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc Natl Acad Sci USA 97:7963–7968

    Article  PubMed  CAS  Google Scholar 

  • Valencik ML, McDonald JA (2001) Codon optimization markedly improves doxycycline regulated gene expression in the mouse heart. Transgen Res 10:269–275

    Article  CAS  Google Scholar 

  • Van West P, Kamoun S, Van ‘t Klooster JW, Govers F (1999a) Internuclear gene silencing in Phytophthora infestans. Mol Cell 3:339–348

    Article  Google Scholar 

  • van West P et al (1999b) Green fluorescent protein (GFP) as a reporter gene for the plant pathogenic oomycete Phytophthora palmivora. FEMS Microbiol Lett 178:71–80

    Article  Google Scholar 

  • Vogt K, Bhabhra R, Rhodes JC, Askew DS (2005) Doxycycline-regulated gene expression in the opportunistic fungal pathogen Aspergillus fumigatus. BMC Microbiol 5:1

    Article  PubMed  CAS  Google Scholar 

  • Weinmann P, Gossen M, Hillen W, Bujard H, Gatz C (1994) A chimeric transactivator allows tetracycline-responsive gene expression in whole plants. Plant J 5:559–569

    PubMed  CAS  Google Scholar 

  • Zarnack K et al (2006) Tetracycline-regulated gene expression in the pathogen Ustilago maydis. Fungal Genet Biol 43:727–738

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by grants to H. S. J. from Syngenta Limited, the University of California Discovery Grant Program, and the National Research Initiative Competitive Grant Program of the United States Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard S. Judelson.

Additional information

Communicated by H. Osiewacz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Judelson, H.S., Narayan, R., Ah Fong, A.M.V. et al. Performance of a tetracycline-responsive transactivator system for regulating transgenes in the oomycete Phytophthora infestans . Curr Genet 51, 297–307 (2007). https://doi.org/10.1007/s00294-007-0125-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-007-0125-2

Keywords

Navigation