Skip to main content
Log in

Fungal degradation of wood: initial proteomic analysis of extracellular proteins of Phanerochaete chrysosporium grown on oak substrate

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Two-dimensional (2-D) gel electrophoresis was used to separate the extracellular proteins produced by the white-rot fungus Phanerochaete chrysosporium. Solid-substrate cultures grown on red oak wood chips yielded extracellular protein preparations which were not suitable for 2-D gel analysis. However, pre-washing the wood chips with water helped decrease the amount of brown material which caused smearing on the acidic side of the isoelectric focusing gel. The 2-D gels from these wood-grown cultures revealed more than 45 protein spots. These spots were subjected to in-gel digestion with trypsin followed by either peptide fingerprint analysis by matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/MS) or by liquid chromatography (LC)/MS/MS sequencing. Data from both methods were analyzed by Protein Prospector and the local P. chrysosporium annotated database. MALDI-TOF/MS only identified two proteins out of 25 analyzed. This was most likely due to problems associated with glycosylation. Protein sequencing by LC/MS/MS of the same 25 proteins resulted in identification of 16 proteins. Most of the proteins identified act on either cellulose or hemicellulose or their hydrolysis products. Thus far no lignin peroxidase, Mn peroxidase or laccases have been detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ander P (1994) The cellobiose oxidizing enzymes Cbq and Cbo as related to lignin and cellulose degradation—a review. FEMS Microbiol Rev 13:297–312

    Article  CAS  Google Scholar 

  • Atalla RH (1993) Trichoderma reesei cellulases and other hydrolases. In: Suominen P, Reinikainen T (eds) The structures of native cellulases. Foundation for biotechnical and industrial fermentation, Helsinki, pp 25–39

    Google Scholar 

  • Bao WJ, Usha SN, Renganathan V (1993) Purification and characterization of cellobiose dehydrogenase, a novel extracellular hemoflavoenzyme from the white-rot fungus Phanerochaete chrysosporium. Arch Biochem Biophys 300:705–713

    Article  CAS  PubMed  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brumer H, Sims PFG, Sinnott ML (1999) Lignocellulose degradation by Phanerochaete chrysosporium: purification and characterization of the main α-galactosidase. Biochem J 339:43–53

    Article  CAS  PubMed  Google Scholar 

  • Castanares A, Hay AJ, Gordon AH, McCrae SI, Wood TM (1995) D-Xylan-degrading enzyme system from the fungus Phanerochaete chrysosporium: isolation and partial characterisation of an α-(4-O-methyl)-D-glucuronidase. J Biotechnol 43:183–194

    Article  CAS  PubMed  Google Scholar 

  • Crawford DL, Crawford RL (1980) Microbial degradation of lignin. Enzyme Microb Technol 2:11–22

    Article  CAS  Google Scholar 

  • Datta A, Bettermann A, Kirk TK (1991) Identification of a specific manganese peroxidase among ligninolytic enzymes secreted by Phanerochaete chrysosporium during wood decay. Appl Environ Microbiol 57:1453–1460

    CAS  PubMed  Google Scholar 

  • Dobozi MS, Szakacs G, Bruschi CV (1992) Xylanase activity of Phanerochaete chrysosporium. Appl Environ Microbiol 58:3466–3471

    Google Scholar 

  • Duarte JC, Costa-Ferreira M, Sena-Martins G (1999) Cellobiose dehydrogenase. Possible roles and importance for pulp and paper biotechnology. Bioresour Technol 68:43–48

    Article  CAS  Google Scholar 

  • Eriksson KE, Pettersson B (1975) Extracellular enzyme system utilized by the fungus Sporotrichum pulverulentum (Chrysosporium lignorum) for the breakdown of cellulose. 3. Purification and physico-chemical characterization of an exo-1,4-β-glucanase. Eur J Biochem 51:213–218

    CAS  PubMed  Google Scholar 

  • Eriksson KE, Rzedowski W (1969) Extracellular enzyme system utilized by the fungus Chrysosporium lignorum for the breakdown of cellulose. II. Separation and characterization of three cellulase peaks. Arch Biochem Biophys 129:689–695

    CAS  PubMed  Google Scholar 

  • Eriksson E-EL, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Fryksdale BG, Jedrzejewski PT, Wong DL, Gaertner AL, Miller BS (2002) Impact of deglycosylation methods on two-dimensional gel electrophoresis and matrix assisted laser desorption/ionization–time of flight-mass spectrometry for proteomic analysis. Electrophoresis 23:2184–2193

    Article  CAS  PubMed  Google Scholar 

  • Gold MH, Youngs HL, Gelpke MDS (2000) Manganese peroxidase. (Metal ions in biological systems, vol 37) Dekker, New York, pp 559–586

  • Hammel KE, Tien M, Kalyanaraman B, Kirk TK (1985) Mechanism of oxidative Cα-Cβ cleavage of a lignin model dimer by Phanerochaete chrysosporium ligninase. Stoichiometry and involvement of free radicals. J Biol Chem 260:8348–8353

    CAS  PubMed  Google Scholar 

  • Henriksson G, Johansson G, Pettersson G (2000) A critical review of cellobiose dehydrogenases. J Biotechnol 78:93–113

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Macedo ML, Ferraz A, Rodriguez J, Ottoboni LMM, Mello MPD (2002) Iron-regulated proteins in Phanerochaete chrysosporium and Lentinula edodes: differential analysis by sodium dodecyl sulfate polyacrylamide gel electrophoresis and two-dimensional polyacrylamide gel electrophoresis profiles. Electrophoresis 23:655–661

    Article  CAS  PubMed  Google Scholar 

  • Igarashi K, Samejima M, Saburi Y, Habu N, Eriksson KEL (1997) Localization of cellobiose dehydrogenase in cellulose-grown cultures of Phanerochaete chrysosporium. Fungal Genet Biol 21:214–222

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, He L, Fountoulakis M (2004) Comparison of protein precipitation methods for sample preparation prior to proteomic analysis. J Chromatogr A 1023:317–320

    Article  CAS  PubMed  Google Scholar 

  • Johnson KG (1990) Exocellular mannanases from hemicellulolytic fungi. World J Microbiol Biotechnol 6:209–217

    CAS  Google Scholar 

  • Kawai R, Yoshida M, Tani T, Igarashi K, Ohira T, Nagasawa H, Samejima M (2003) Production and characterization of recombinant Phanerochaete chrysosporium β-glucosidase in the methylotrophic yeast Pichia pastoris. Biosci Biotechnol Biochem 67:1–7

    Article  CAS  PubMed  Google Scholar 

  • Kersten PJ, Tien M, Kalyanaraman B, Kirk TK (1985) The ligninase of Phanerochaete chrysosporium generates cation radicals from methoxybenzenes. J Biol Chem 260:2609–2612

    CAS  PubMed  Google Scholar 

  • Kirk TK (1983) Degradation and conversion of lignocelluloses. Arnold, London

    Google Scholar 

  • Kirk TK, Cullen D (1998) Enzymology and molecular genetics of wood degradation by white-rot fungi. Environmentally friendly technologies for the pulp and paper industry. Wiley, Hoboken

    Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic combustion: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505

    Article  CAS  PubMed  Google Scholar 

  • Kirk TK, Tien M, Kersten PJ, Kalyanaraman B, Hammel KE, Farrell RL (1990) Lignin peroxidase from fungi Phanerochaete chrysosporium. Methods Enzymol 188:159–171

    CAS  Google Scholar 

  • Koc EC, Burkhart W, Blackburn K, Moyer MB, Schlatzer DM, Moseley A, Spremulli LL (2001) The large subunit of the mammalian mitochondrial ribosome—analysis of the complement of ribosomal proteins present. J Biol Chem 276:43958–43969

    Article  CAS  PubMed  Google Scholar 

  • Kuan IC, Tien M (1989a) Phosphorylation of lignin peroxidases from Phanerochaete chrysosporium—identification of mannose 6-phosphate. J Biol Chem 264:20350–20355

    CAS  PubMed  Google Scholar 

  • Kuan IC, Tien M (1989b) Phosphorylation of lignin peroxidases from Phanerochaete chrysosporium. Identification of mannose 6-phosphate. J Biol Chem 264:20350–20355

    CAS  PubMed  Google Scholar 

  • Li B, Nagalla SR, Renganathan V (1996) Cloning of a cDNA encoding cellobiose dehydrogenase, a hemoflavoenzyme from Phanerochaete chrysosporium. Appl Environ Microbiol 62:1329–1335

    CAS  PubMed  Google Scholar 

  • Martinez D, Larrondo LF, Putnam N, Gelpke MDS, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F, Coutinho PM, Henrissat B, Berka R, Cullen D, Rokhsar D (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700

    Article  CAS  PubMed  Google Scholar 

  • Orth AB, Royse DJ, Tien M (1993) Ubiquity of lignin degrading peroxidases among various wood-degrading fungi. Appl Environ Microbiol 59:4017–4023

    Google Scholar 

  • Shanley NA, Vandenbroek LAM, Voragen AGJ, Coughlan MP (1993) Isolation and characterization of an endopolygalacturonase from Phanerochaete chrysosporium. J Biotechnol 28:179–197

    Article  CAS  Google Scholar 

  • Stewart P, Kersten P, Vanden Wymelenberg A, Gaskell J, Cullen D (1992) Lignin peroxidase gene family of Phanerochaete chrysosporium: complex regulation by carbon and nitrogen limitation and identification of a second dimorphic chromosome. J Bacteriol 174:5036–5042

    CAS  PubMed  Google Scholar 

  • Streamer M, Eriksson KE, Pettersson B (1975) Extracellular enzyme system utilized by the fungus Sporotrichum pulverulentum (Chrysosporium lignorum) for the breakdown of cellulose. Functional characterization of five endo-1,4-β-glucanases and one exo-1,4-β-glucanase. Eur J Biochem 59:607–613

    CAS  PubMed  Google Scholar 

  • Tempelaars CAM, Birch PRJ, Sims PFG, Broda P (1994) Isolation, characterization, and analysis of the expression of the CBHII gene of Phanerochaete chrysosporium. Appl Environ Microbiol 60:4387–4393

    CAS  PubMed  Google Scholar 

  • Tien M, Kirk TK (1988) Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol 161:238–249

    Article  CAS  Google Scholar 

  • Uzcategui E, Ruiz A, Montesino R, Johansson G, Pettersson G (1991) The 1,4-β-D-glucan cellobiohydrolases from Phanerochaete chrysosporium.1. A system of synergistically acting enzymes homologous to Trichoderma reesei. J Biotechol 19:271–285

    Article  CAS  PubMed  Google Scholar 

  • Van Rensburg P, Van Zyl WH, Pretorius IS (1998) Engineering yeast for efficient cellulose degradation. Yeast 14:67–76

    Article  CAS  PubMed  Google Scholar 

  • Vanden Wymelenberg A, Covert S, Cullen D (1993) Identification of the gene encoding the major cellobiohydrolase of the white-rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 59:3492–3494

    CAS  PubMed  Google Scholar 

  • Varela E, Mester T, Tien M (2003) Culture conditions affecting biodegradation components of the brown-rot fungus Gloeophyllum trabeum. Arch Microbiol 180:251–256

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was support in part by a grant from the Department of Energy (DE-FG02-87ER13690). We thank Tunde Mester and Elisa Varela for preliminary work on isolating extracellular proteins.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Tien.

Additional information

Communicated by U. Kück

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbas, A., Koc, H., Liu, F. et al. Fungal degradation of wood: initial proteomic analysis of extracellular proteins of Phanerochaete chrysosporium grown on oak substrate. Curr Genet 47, 49–56 (2005). https://doi.org/10.1007/s00294-004-0550-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-004-0550-4

Keywords

Navigation