Skip to main content
Log in

Osteoidbildende Knochentumoren

Morphologie und aktuelle translationale Zellbiologie

Osteoid-forming bone tumors

Morphology and current translational cell biology

  • Schwerpunkt: Tumoren des Knochens und der Gelenke
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Die wichtigsten gutartigen osteoidbildenden Tumoren sind das Osteoidosteom und das Osteoblastom. Sie wachsen langsam und sind scharf begrenzt. Histologisch zeigen die Tumorzellen keine Atypien und keine vermehrten Mitosen. In typischen Fällen ist die Diagnose eindeutig. Äußerst problematisch sind aber die seltenen Fälle auf der Grenze zwischen Osteoblastom und Osteosarkom. Molekulargenetische Untersuchungen sollten hier in Zukunft zur korrekten Diagnosefindung beitragen.

Der wichtigste maligne osteoidbildende Tumor ist das juvenile hochmaligne Osteosarkom. Vor etwa 40 Jahren wurde für die meist jungen Patienten eine neoadjuvante Chemotherapie eingeführt, welche die Prognose hoch signifikant verbessert hat. Es wurde aber schnell eine Plateauphase erreicht, und seit Jahrzehnten gibt es mit den konventionellen Therapieansätzen keinen weiteren Fortschritt mehr. Realistischerweise muss angenommen werden, dass eine weitere Effizienzsteigerung der Therapie nur auf Basis der neuen molekulargenetischen und zellbiologischen Erkenntnisse erzielt werden kann. Die sich aus diesen Erkenntnissen ableitenden targettherapeutischen Strategien werden in diesem Beitrag diskutiert.

Die sehr viel selteneren nicht hoch malignen Osteosarkome sind an der Knochenoberfläche lokalisiert. Es handelt sich um die parossalen Osteosarkome, die meist G1-Tumoren sind und die periostealen Osteosarkome, meist G2. Wenn in seltenen Fällen die Differenzialdiagnose zwischen einem parossalen Osteosarkom und einer fibrösen Dysplasie schwierig ist, kann der Nachweis von GNAS-Mutationen in der fibrösen Dysplasie hilfreich sein. Periosteale Osteosarkome enthalten im Gegensatz zu Chondromen und Chondrosarkomen keine IDH1- und IDH2-Mutationen.

Abstract

Osteoid osteoma and osteoblastoma are the most important benign osteoid-forming tumors. They grow slowly and are well differentiated. Histologically, the tumor cells show no atypia and no increased mitoses. In typical cases, they can be clearly diagnosed. However, the rare cases on the dividing line between osteoblastoma and osteosarcoma are extremely problematic. In these cases, molecular genetic investigations should contribute to finding the correct diagnosis in the future.

Juvenile highly malignant osteosarcoma is the most important malignant osteoid-forming tumor. About 40 years ago, neoadjuvant chemotherapy was introduced for the mostly young patients. This therapy highly significantly improved prognosis. However, a plateau phase was quickly reached and the last several decades have seen no further progress in conventional therapeutic approaches. There is no doubt that further progress can only be achieved on the basis of new molecular genetic and cell biological findings. The target-therapeutic strategies derived from these findings will be discussed in this review.

The rare parosteal osteosarcoma and the even rarer periosteal osteosarcoma are mostly not highly malignant tumors that are located on the surface of bone. The parosteal osteosarcoma is usually G1 and the periosteal osteosarcoma G2. Occasionally, the differential diagnosis between a parosteal osteosarcoma and a fibrous dysplasia is difficult. In such rare cases, the detection of GNAS mutations in fibrous dysplasia can prove useful. In contrast to chondromas and chondrosarcomas, periosteal osteosarcomas do not contain IDH1 and IDH2 mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Anderson PM, Bielack S, Gorlick RG et al (2016) A phase II study of clinical activity of SCH 717454 (robatumumab) in patients with relapsed osteosarcoma and Ewing sarcoma. Pediatr Blood Cancer 63:1761–1770

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bacci G, Ferrari S, Bertoni F et al (2001) Histologic response of high-grade nonmetastatic osteosarcoma of the extremity to chemotherapy. Clin Orthop Relat Res 386:186–196

    Google Scholar 

  3. Bacci G, Bertoni F, Longhi et al (2003) Neoadjuvant chemotherapy for high-grade central osteosarcoma of the extremity: Histologic response to preoperative chemotherapy correlates with histologic subtype of the tumor. Cancer 97:3068–3075

    CAS  PubMed  Google Scholar 

  4. Baker AC, Rezeanu L, Klein MJ et al (2010) Aggressive osteoblastoma: a case report involving a unique chromosomal aberration. Int J Surg Pathol 18:219–224

    PubMed  Google Scholar 

  5. Behjati S, Tarpey PS, Haase K et al (2017) Recurrent mutation of IGF signalling genes and distinct patterns of genomic rearrangement in osteosarcoma. Nat Comm 8:15936

    CAS  Google Scholar 

  6. Bertoni F, Bacchini P, Donati D et al (1993) Osteoblastoma-like osteosarcoma. The Rizzoli institute experience. Mod Pathol 6:707–716

    CAS  PubMed  Google Scholar 

  7. Bertoni F, Bacchini P, Staals EL et al (2005) Dedifferentiated parosteal osteosarcoma: the experience of the Rizzoli Institute. Cancer 103:2373–2382

    PubMed  Google Scholar 

  8. Bertoni F, Unni KK, al McLeod Raet (1985) Osteosarcoma resembling osteoblastoma. Cancer 55:416–426

    CAS  PubMed  Google Scholar 

  9. Bhat I, Zerin JM, Bloom DA et al (2003) Unusual presentation of osteoid osteoma mimicking osteomyelitis in a 27-month-old infant. Pediatr Radiol 33:425–428

    PubMed  Google Scholar 

  10. Bianco P, Riminucci M, Majolagbe A (2000) Mutations of the GNAS1 gene, stromal cell dysfunction, and osteomalacic changes in non-McCune-Albright fibrous dysplasia of bone. J Bone Miner Res 15:120–128

    CAS  PubMed  Google Scholar 

  11. Bielack SS, Kempf-Bielack B, Delling G et al (2002) Prognostic factors in high grade osteosarcoma of the extremities or trunk: an analysis of 1702 patients treated on neoadjuvant Cooperative Osteosarcoma Study Group protocols. J Clin Oncol 20:776–790

    PubMed  Google Scholar 

  12. Bishop MW, Janeway KA (2016) Emerging concepts for PI3K/mTOR inhibition as a potential treatment for osteosarcoma. F1000Res 5:1590

    Google Scholar 

  13. Bousquet M, Noirot C, Accadbled F et al (2016) Whole-exome sequencing in osteosarcoma reveals important heterogeneity of genetic alterations. Ann Oncol 27:738–744

    CAS  PubMed  Google Scholar 

  14. Branstetter D, Rohrbach K, Huang LY et al (2015) RANK and RANK ligand expression in primary human osteosarcoma. J Bone Oncol 4:59–68

    PubMed  PubMed Central  Google Scholar 

  15. Bridge JA, Neff JR, Sandberg AA (1990) Cytogenetic analysis of dermatofibrosarcoma protuberans. Cancer Genet Cytogenet 49:199–202

    CAS  PubMed  Google Scholar 

  16. Burgess A, Shah K, Hough O et al (2016) Frequent FOS gene rearrangements in epithelioid hemangioma: a molecular study of 58 cases with morphologic reappraisal. Am J Surg Pathol 39:1313–1321

    Google Scholar 

  17. Bryant HE, Schultz N, Thomas HD et al (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly (ADP-ribose) polymerase. Nature 434:913–917

    CAS  PubMed  Google Scholar 

  18. Callahan MK, Postow MA, Wolchok JD (2015) CTLA‑4 and PD‑1 pathway blockade: combinations in the clinic. Front Oncol 4:1–7

    Google Scholar 

  19. Campanacci M, Giunti A (1976) Periosteal osteosarcoma. Review of 41 cases, 22 with long-term follow-up. Ital J Orthop Traumatol 2:22–35

    Google Scholar 

  20. Campanacci M, Picci P, Gherlinzoni F et al (1984) Parosteal osteosarcoma. J Bone Joint Surg 66:313–321

    CAS  Google Scholar 

  21. Cao Y, Roth M, Piperdi S et al (2014) Insulin-like growth factor 1 receptor and response to anti-IGF1R antibody therapy in osteosarcoma. Plos One 9:e106249

    PubMed  PubMed Central  Google Scholar 

  22. Carter JM, Inwards CY, Jin L et al (2014) Activating GNAS mutations in parosteal osteosarcoma. Am J Surg Pathol 38:402–409

    PubMed  Google Scholar 

  23. Cathomas R, Rothermundt C, Bode B et al (2014) RANK ligand blockade with denosumab in combination with sorafenib in chemorefractory osteosarcoma: A possible step forward? Oncology 88:257–260

    PubMed  Google Scholar 

  24. Cesari M, Alberghini M, Vanel D et al (2011) Periosteal osteosarcoma: a single-institution experience. Cancer 117:1731–1735

    PubMed  Google Scholar 

  25. Chabanon RM, Pedrero M, Lefebvre C (2016) Mutational landscape and sensitivity to immune checkpoint blockers. Clin Cancer Res 22:4309–4321

    CAS  PubMed  Google Scholar 

  26. Champiat S, Ferté C, Lebel-Binay S et al (2014) Exomics and immunogenics. OncoImmunology 3:e27817

    PubMed  PubMed Central  Google Scholar 

  27. Chen X, Bahrami A, Pappo A et al (2014) Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep 7:104–112

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Chiappetta C, Mancini M, Lessi F et al (2017) Whole-exome analysis in osteosarcoma to identify a personalized therapy. Oncotarget 8:80416–80428

    PubMed  PubMed Central  Google Scholar 

  29. Chui MH, Kandel RA, Wong M (2016) Histopathologic features of prognostic significance in high-grade osteosarcoma. Arch Pathol Lab Med 140:1231–1242

    PubMed  Google Scholar 

  30. Cogdill AP, Andrew MC, Warren JA (2017) Hallmarks of response to immune checkpoint blockade. Br J Cancer 117:1–7

    PubMed  PubMed Central  Google Scholar 

  31. de Groot AF, Appelman-Dijkstra NM, van der Burg SH et al (2018) The anti-tumor effect of RANKL inhibition in malignant solid tumors—A systematic review. Cancer Treat Rev 62:18–28

    PubMed  Google Scholar 

  32. Delling G, Werner M (2003) Pathomorphologie des parossealen Osteosarkoms. Erfahrungen an 125 Fällen des Hamburger Knochentumor-Registers. Orthopädie 32:74–81

    CAS  Google Scholar 

  33. Dorfman HD, Weiss SW (1984) Borderline osteoblastic tumors: problems in the differential diagnosis of aggressive osteoblastoma and low-grade osteosarcoma. Semin Diagn Pathol 1:215–234

    CAS  PubMed  Google Scholar 

  34. Downing JR, Wilso RK, Zhang J et al (2012) The pediatric cancer genome project. Nat Genet 44:619–622

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Dujardin F, Binh MBN, Bouvier C et al (2011) MDM2 and CDK4 immunohistochemistry is a valuable tool in the differential diagnosis of low-grade osteosarcomas and other primary fibro-osseous lesions of the bone. Mod Pathol 24:624–637

    CAS  PubMed  Google Scholar 

  36. Engert F, Kovac M, Baumhoer et al (2017) Osteosarcoma cells with genetic signatures of BRCAness are susceptible to the PARP inhibitor talazoparib alone or in combination with chemotherapeutics. Oncotarget 8:48794–48806

    PubMed  Google Scholar 

  37. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767

    CAS  PubMed  Google Scholar 

  38. Fittall MW, Mifsud W, Pillay N et al (2018) Recurrent rearrangements of FOS and FOSB define osteoblastoma. Nat Commun 9:1–6

    CAS  Google Scholar 

  39. Fletcher CDM (2013) Centre international de recherche sur le cancer. WHO classification of tumours of soft tissue and bone, 4. Aufl. International Agency for Research on Cancer, Lyon

    Google Scholar 

  40. Gambarotti M, Dei Tos AP, Vanel D et al (2018) Osteoblastoma-like osteosarcoma: high-grade or low-grade osteosarcoma? Histopathology. https://doi.org/10.1111/his.13746

    Article  PubMed  Google Scholar 

  41. Giannico G, Holt GE, Homlar KC et al (2009) Osteoblastoma characterized by a three-way translocation: report of a case and review of the literature. Cancer Genet Cytogenet 195:168–171

    CAS  PubMed  Google Scholar 

  42. Gobin B, Battaglia S, Lanel R et al (2014) NVP-BEZ235, a dual PI3K/mTOR inhibitor, inhibits osteosarcoma cell proliferation and tumor development in vivo with an improved survival rate. Cancer Lett 344:291–298

    CAS  PubMed  Google Scholar 

  43. Green JT, Mills AM (2014) Osteogenic tumors of bone. Semin Diagn Pathol 31:21–29

    PubMed  Google Scholar 

  44. Heim S, Mandahl N, Kristoffersson U et al (1987) Marker ring chromosome—A new cytogenetic abnormality characterizing lipogenic tumors? Cancer Genet Cytogenet 24:319–326

    CAS  PubMed  Google Scholar 

  45. Hermann G, Klein MJ, Springfield D et al (2004) Osteoblastoma-like osteosarcoma. Clin Radiol 59:105–108

    CAS  PubMed  Google Scholar 

  46. Huang SC, Zhang L, Sung YS et al (2015) Frequent FOS gene rearrangements in epithelioid hemangioma: a molecular study of 58 cases with morphologic reappraisal. Am J Surg Pathol 39:1313–1321

    PubMed  PubMed Central  Google Scholar 

  47. Intlekofer AM, Thompson CB (2013) At the Bench: preclinical rationale for CTLA‑4 and PD‑1 blockade as cancer immunotherapy. J Leukoc Biol 94:25–39

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Isakoff MS, Bielack SS, Meltzer P et al (2015) Osteosarcoma: current treatment and a collaborative pathway to success. J Clin Oncol 33:3029–3035

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Jamshidi K, Gharehdaghi M, Hajialiloo SS et al (2018) Denosumab in patients with giant cell tumor and its. Arch Bone Jt Surg 260:260–268

    Google Scholar 

  50. Janku F (2017) Phosphoinositide 3‑kinase (PI3K) pathway inhibitors in solid tumors: from laboratory to patients. Cancer Treat Rev 59:93–101

    CAS  PubMed  Google Scholar 

  51. Jones DH, Nakashima T, Sanchez OH et al (2006) Regulation of cancer cell migration and bone metastasis by RANKL. Nature 440:692–696

    CAS  PubMed  Google Scholar 

  52. Kansara M, Teng MW, Smyth MJ et al (2014) Translational biology of osteosarcoma. Nat Rev Cancer 14:722–735

    CAS  PubMed  Google Scholar 

  53. Kato I, Furuya M, Matsuo K et al (2018) Giant cell tumours of bone treated with denosumab: histological, immunohistochemical and H3F3A mutation analyses. Histopathology 72:914–922

    PubMed  Google Scholar 

  54. Klein MH, Shankman S (1992) Osteoid osteoma: radiologic and pathologic correlation. Skeletal Radiol 21:23–31

    CAS  PubMed  Google Scholar 

  55. Klein MJ, Siegal GP (2006) Osteosarcoma: anatomic and histologic variants. Am J Clin Pathol 125:555–581

    PubMed  Google Scholar 

  56. Koirala P, Roth ME, Gill J et al (2016) Immune infiltration and PD-L1 expression in the tumor microenvironment are prognostic in osteosarcoma. Sci Rep 6:1–10

    Google Scholar 

  57. Kovac M, Blattmann C, Ribi S et al (2015) Exome sequencing of osteosarcoma reveals mutation signatures reminiscent of BRCA deficiency. Nat Commun 6:1–9

    Google Scholar 

  58. Kuijjer ML, Peterse EFP, van den Akker BEWM et al (2013) IR/IGF1R signaling as potential target for treatment of high-grade osteosarcoma. Bmc Cancer 13:245

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Lebert JM, Leste R, Powell E (2018) Advances in the systemic treatment of triple-negative breast cancer. Curr Oncol 25:S142–S150

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lee SE, Lee EH, Park H et al (2012) The diagnostic utility of the GNAS mutation in patients with fibrous dysplasia: meta-analysis of 168 sporadic cases. Hum Pathol 43:1234–1242

    CAS  PubMed  Google Scholar 

  61. Lian Z, Han J, Huang L (2018) A005, a novel inhibitor of phosphatidylinositol 3‑kinase/mammalian target of rapamycin prevents osteosarcoma-induced osteolysis. Carcinogenesis 40:e1–e13

    Google Scholar 

  62. Lin YH, Jewell BE, Gingold J et al (2017) Osteosarcoma: molecular pathogenesis and iPSC modeling. Trends Mol Med 23:737–755

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Lipton A, Goess C (2011) Clinical development of anti-RANKL therapies for treatment and prevention of bone metastasis. Bone 48:96–99

    CAS  PubMed  Google Scholar 

  64. Liu XW, Zi Y, Xiang LB (2015) Periosteal osteosarcoma: a review of clinical evidence. Int J Clin Exp Med 8:37–44

    PubMed  PubMed Central  Google Scholar 

  65. Loizaga JM, Calvo M, Lopez-Barea F (1993) Osteoblastoma and osteoid osteoma. Clinical and morphological features of 162 cases. Pathol Res Pract 189:33–41

    CAS  PubMed  Google Scholar 

  66. Lord CJ, Ashworth A (2016) BRCAness revisited. Nat Rev Cancer 16:110–120

    CAS  PubMed  Google Scholar 

  67. Lucas DR, Unni KK, McLeod RA et al (1994) Osteoblastoma: clinicopathologic study of 306 cases. Hum Pathol 25:117–134

    CAS  PubMed  Google Scholar 

  68. Lussier DM, Johnson JL, Hingorani P et al (2015) Combination immunotherapy with α‑CTLA‑4 and α‑PD-L1 antibody blockade prevents immune escape and leads to complete control of metastatic osteosarcoma. J Immunother Cancer 3:1–11

    Google Scholar 

  69. Maheshwari AV, Jelinek JS, Seibel NL et al (2012) Bilateral synchronous tibial periosteal osteosarcoma with familial incidence. Skeletal Radiol 41:1005–1009

    PubMed  Google Scholar 

  70. Mascarello JT, Krous H, Carpenter PM (1993) Unbalanced translocation resulting in the loss of the chromosome 17 short arm in an osteoblastoma. Cancer Genet Cytogenet 69:65–67

    CAS  PubMed  Google Scholar 

  71. Masuda H, Miller C, Koeffler HP et al (1987) Rearrangement of the p53 gene in human osteogenic sarcomas. Proc Natl Acad Sci U S A 84:7716–7719

    CAS  PubMed  PubMed Central  Google Scholar 

  72. McCann KE, Hurvitz SA (2018) Advances in the use of PARP inhibitor therapy for breast cancer. Drugs Context 7:1–30

    Google Scholar 

  73. Merchant MS, Bernstein D, Amoako M et al (2016) Adjuvant immunotherapy to improve outcome in high-risk pediatric sarcomas. Clin Cancer Res 22:3182–3191

    CAS  PubMed  Google Scholar 

  74. Milde-Langosch K (2005) The Fos family of transcription factors and their role in tumourigenesis. Eur J Cancer 41:2449–2461

    CAS  PubMed  Google Scholar 

  75. Murphey MD, Robbin MR, McRae GA et al (1997) The many faces of osteosarcoma. Radiographics 17:1205–1231

    CAS  PubMed  Google Scholar 

  76. Murphey MD, Jelinek JS, Temple HT et al (2004) Imaging of periosteal osteosarcoma: radiologic-pathologic comparison. Radiology 233:129–138

    PubMed  Google Scholar 

  77. Mutsaers AJ, Walkley CR (2014) Cells of origin in osteosarcoma: mesenchymal stem cells or osteoblast committed cells? Bone 62:56–63

    PubMed  Google Scholar 

  78. Nagano A, Matsumoto S, Kawai A (2019) Osteosarcoma in patients over 50 years of age: Multi-institutional retrospective analysis of 104 patients. J Orthop Sci. https://doi.org/10.1016/j.jos.2019.04.008

    Article  PubMed  Google Scholar 

  79. Nik-Zainal S, Alexandrov LB, Wedg DC et al (2012) Mutational processes molding the genomes of 21 breast cancers. Cell 149:979–993

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Nord KH, Nilsson J, Arbajian E (2013) Recurrent chromosome 22 deletions in osteoblastoma affect inhibitors of the Wnt/beta-catenin signaling pathway. Plos One 8:1–7

    Google Scholar 

  81. Nouri H, Maitigue BM, Abid L (2015) Surface osteosarcoma: Clinical features and therapeutic implications. J Bone Oncol 4:115–123

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Okada K, Frassica FJ, Sim FH (1994) Parosteal osteosarcoma. A clinicopathological study. J Bone Joint Surg Am 76:366–378

    CAS  PubMed  Google Scholar 

  83. Ozger H, Alpan MS, Söylemez K et al (2016) Clinical management of a challenging malignancy, osteoblastoma-like osteosarcoma: a report of four cases and a review of the literature. Ther Clin Risk Manag 12:1261–1270

    PubMed  PubMed Central  Google Scholar 

  84. Palmerini E, Agostinelli C, Picci P (2017) Tumoral immune-infiltrate (IF), PD-L1 expression and role of CD8/TIA‑1 lymphocytes in localized osteosarcoma patients treated within protocol ISG-OS1. Oncotarget 8:111836–111846

    PubMed  PubMed Central  Google Scholar 

  85. Park HJ, Bae JS, Kim KM et al (2018) The PARP inhibitor olaparib potentiates the effect of the DNA damaging agent doxorubicin in osteosarcoma. J Exp Clin Cancer Res 37:9–11

    Google Scholar 

  86. Perry JA, Kiezun A, Tonzi P et al (2014) Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma. Proc Natl Acad Sci 11:E5564–E5573

    Google Scholar 

  87. Quist T, Jin H, Zhu JF et al (2015) The impact of osteoblastic differentiation on osteosarcomagenesis in the mouse. Oncogene 34:4278–4284

    CAS  PubMed  Google Scholar 

  88. Reed DE, Shokat KM (2014) Targeting osteosarcoma. Proc Natl Acad Sci 111:18100–18101

    CAS  PubMed  Google Scholar 

  89. Renema N, Navet B, Heymann MF (2016) RANK-RANKL signalling in cancer. Biosci Rep 36:e366

    PubMed  PubMed Central  Google Scholar 

  90. Rickel K, Fang F, Tao J et al (2017) Molecular genetics of osteosarcoma. Bone 102:69–79

    CAS  PubMed  Google Scholar 

  91. Righi A, Gambarotti M, Benini S et al (2015) MDM2 and CDK4 expression in periosteal osteosarcoma. Hum Pathol 46:549–553

    CAS  PubMed  Google Scholar 

  92. Roberts RD, Lizardo MM, Reed DR (2019) Provocative questions in osteosarcoma basic and translational biology: a report from the children’s oncology group. Cancer 125:3514–3525

    PubMed  Google Scholar 

  93. Rubio R, Gutierrez-Aranda I, Sáez-Castillo AI et al (2013) The differentiation stage of p53-Rb-deficient bone marrow mesenchymal stem cells imposes the phenotype of in vivo sarcoma development. Oncogene 32:4970–4980

    CAS  PubMed  Google Scholar 

  94. Salinas-Souza C, De Andrea C, Bihl M et al (2015) GNAS mutations are not detected in parosteal and low-grade central osteosarcomas. Mod Pathol 28:1336–1342

    CAS  PubMed  Google Scholar 

  95. Salzer-Kuntschik M, Delling G, Beron G et al (1983) Morphological grades of regression in osteosarcoma after polychemotherapy—Study COSS 80. J Canc Res Clin Oncol 106:21–24

    Google Scholar 

  96. Schneider G, Schmidt-Supprian M, Rad R et al (2017) Tissue-specific tumorigenesis: context matters. Nat Rev Cancer 17:239–253

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Sim FH, Dahlin DC, Beabout JW (1975) Osteoid-osteoma: diagnostic problems. J Bone Joint Surg Am 57:154–159

    CAS  PubMed  Google Scholar 

  98. Simpson A, Petnga W, Macaulay VM et al (2017) Insulin-like growth factor (IGF) pathway targeting in cancer: role of the IGF axis and opportunities for future combination studies. Target Oncol 12:571–597

    PubMed  PubMed Central  Google Scholar 

  99. Sinovic JF, Bridge JA, Neff JR (1992) Ring chromosome in parosteal osteosarcoma. Cancer Genet Cytogenet 62:50–52

    CAS  PubMed  Google Scholar 

  100. Stephens PJ, Greenman CD, Fu B et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144:27–40

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Subbiah V, Wagner MJ, McGuire MF et al (2015) Personalized comprehensive molecular profiling of highrisk osteosarcoma: implications and limitations for precision medicine. Oncotarget 6:40642–40654

    PubMed  PubMed Central  Google Scholar 

  102. Tarkkanen M, Böhling T, Gamberi G et al (1998) Comparative genomic hybridization of low-grade central osteosarcoma. Mod Pathol 11:421–426

    CAS  PubMed  Google Scholar 

  103. Tawbi HA, Burgess M, Bolejack V et al (2017) Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol 18:1493–1501

    CAS  PubMed  Google Scholar 

  104. Toguchida J, Ishizaki K, Sasaki MS et al (1989) Preferential mutation of paternally derived RB gene as the initial event in sporadic osteosarcoma. Nature 338:156–158

    CAS  PubMed  Google Scholar 

  105. Unni KK, Dahlin CD, Beabout JW (1975) Periosteal osteogenic sarcoma. An entity distinct from parosteal osteogenic sarcoma. Lab Invest 32:438–443

    Google Scholar 

  106. Vogelstein B, Fearon ER, Hamilton SR et al (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319:525–532

    CAS  PubMed  Google Scholar 

  107. Wang D, Niu X, Wang Z et al (2019) Multiregion sequencing reveals the genetic heterogeneity and evolutionary history of osteosarcoma and matched pulmonary metastases. Cancer Res 79:7–20

    CAS  PubMed  Google Scholar 

  108. Ward WG, Eckardt JJ, Shayestehfar S (1993) Osteoid osteoma diagnosis and management with low morbidity. Clin Orthop Relat Res 291:229–235

    Google Scholar 

  109. Wedekind MF, Denton NL, Chen CY et al (2018) Pediatric cancer immunotherapy: opportunities and challenges. Pediatr Drugs 20:1–14

    Google Scholar 

  110. Wunder JS, Gokgoz N, Parkes R et al (2005) TP53 mutations and outcome in osteosarcoma: a prospective, multicenter study. J Clin Oncol 23:1483–1490

    CAS  PubMed  Google Scholar 

  111. Yang R, Piperdi S, Zhang Y et al (2016) Transcriptional profiling identifies the signaling axes of IGF and transforming growth factor‑β as involved in the pathogenesis of osteosarcoma. Clin Orthop Relat Res 474:178–189

    PubMed  Google Scholar 

  112. Yildiz Y, Bayrakci K, al Altay Met (2001) Osteoid osteoma: the results of surgical treatment. Int Orthop 25:119–122

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Yoshida A, Ushiku T, Motoi T et al (2010) Immunohistochemical analysis of MDM2 and CDK4 distinguishes low-grade osteosarcoma from benign mimics. Mod Pathol 23:1279–1288

    CAS  PubMed  Google Scholar 

  114. Zarogoulidis P, Lampaki S, Turner FJ et al (2014) mTOR pathway: a current, up-to-date mini-review. Oncol Lett 8:2367–2370

    PubMed  PubMed Central  Google Scholar 

  115. Zerdes I, Matikas A, Bergh J et al (2018) Genetic, transcriptional and post-translational regulation of the programmed death protein ligand 1 in cancer: biology and clinical correlations. Oncogene 37:4639–4661

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhang Y, Rosenberg AE (2017) Bone-forming tumors. Surg Pathol Clin 10:513–535

    PubMed  Google Scholar 

  117. Zhu YR, Min H, Fang JF et al (2015) Activity of the novel dual phosphatidylinositol 3‑kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 against osteosarcoma. Cancer Biol Ther 16:602–609

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Roessner.

Ethics declarations

Interessenkonflikt

A. Roessner, V. Schoeder, M. Smolle und J. Haybäck geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Schwerpunktherausgeber

A. Roessner, Magdeburg

J. Haybäck, Magdeburg

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roessner, A., Schoeder, V., Smolle, M. et al. Osteoidbildende Knochentumoren. Pathologe 41, 123–133 (2020). https://doi.org/10.1007/s00292-020-00763-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-020-00763-2

Schlüsselwörter

Keywords

Navigation