Skip to main content
Log in

Enhancement of bursting pressure resistance of braid-reinforced polyether sulfone hollow fiber composites

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This study investigated the effects of different braid materials (polyethylene terephthalate, nylon 6, and their hybrid), weaving frequencies of the braids (7, 9, 11, 13 Hz), and concentrations of polyether sulfone solution (15% and 18 wt%) on braid angles, braid thickness, and bursting resistance. The results showed that for all types of single and hybrid braids, the braid angle decreases with increasing spinning frequency. When spinning frequency was increased from 7 to 13 Hz, the average wall thickness of polyethylene terephthalate, nylon 6, and the hybrid braids increased by approximately 50%, 65%, and 60%, respectively. The bursting pressure results were obtained in the range of 9.3 to 20.2 bars. The Fourier transform infrared spectroscopy results revealed no chemical bond between the braids and the polyether sulfone layer. Optical and electron microscope analyses revealed formation of uniform thickness of the polyether sulfone layers on the surface of the braids, as well as the penetration of polyether sulfone into the gaps between the filaments. The analyses also showed macroscopic adhesion of polyether sulfone to the braids and provided information on the amount and size of the pores in the polymer layers. The results showed that the selection of appropriate weaving frequency, braid materials, and polyether sulfone layer concentration are important as controllable parameters for producing polymeric hollow fiber composites with excellent burst pressure resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

All the data are included in the manuscript. Any more data available on the request.

Abbreviations

ATR-FTIR:

Attenuated total reflectance-Fourier transform infrared

BHFCs:

Braid-reinforced hollow fiber composites

DMAc:

Dimethylacetamide

FESEM:

Field emission scanning electron microscopy

N6:

Nylon 6

PEGMA:

Poly(ethylene glycol) methacrylate

PES:

Polyether sulfone

PET:

Polyethylene terephthalate

PU:

Polyurethane

PVC:

Polyvinyl alcohol

XRD:

X-ray diffraction

References

  1. Ko FK, Pastore CM, Head AA (1990) Atkins & Pearce handbook of industrial braiding. Atkins & Pearce, USA

    Google Scholar 

  2. Douglass WA (1964) Braiding and braiding machinery. Centrex Publishing Company, USA

    Google Scholar 

  3. Nazif A, Karkhanechi H, Saljoughi E, Mousavi SM, Matsuyama H (2021) Effective parameters on fabrication and modification of braid hollow fiber membranes: a review. Membranes 11(11):884. https://doi.org/10.3390/membranes11110884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liang CZ, Askari M, Choong LT, Chung TS (2021) Ultra-strong polymeric hollow fiber membranes for saline dewatering and desalination. Nat Commun 12(1):2338. https://doi.org/10.1038/s41467-021-22684-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kisin S, Božović Vukić J, van der Varst PG, de With G, Koning CE (2007) Estimating the polymer-metal work of adhesion from molecular dynamics simulations. Chem Mater 19(4):903–907. https://doi.org/10.1021/cm0621702

    Article  CAS  Google Scholar 

  6. Jamadagni SN, Godawat R, Garde S (2009) How surface wettability affects the binding, folding, and dynamics of hydrophobic polymers at interfaces. Langmuir 25(22):13092–13099. https://doi.org/10.1021/la9011839

    Article  CAS  PubMed  Google Scholar 

  7. Gee RH, Maiti A, Bastea S, Fried LE (2007) Molecular dynamics investigation of adhesion between TATB surfaces and amorphous fluoropolymers. Macromolecules 40(9):3422–3428. https://doi.org/10.1021/ma0702501

    Article  CAS  Google Scholar 

  8. Vasconcelos PV, Lino FJ, Neto RJ, Henrique P (2004) Contribution of the phase-matrix interface to the behaviour of aluminium filled epoxies. Mater Sci Forum 455:635–638

    Article  Google Scholar 

  9. Wypych G (2018) Mechanisms of adhesion. In: Wypych G (ed) Handbook of adhesion promoters; ChemTec Publishing: Scarborough, ON, Canada, pp 5–44

  10. Shi Q, Wong SC, Ye W, Hou J, Zhao J, Yin J (2012) Mechanism of adhesion between polymer fibers at nanoscale contacts. Langmuir 28(10):4663–4671. https://doi.org/10.1021/la204633c

    Article  CAS  PubMed  Google Scholar 

  11. Liu L, Shen H, Li T, Han Y (2020) Interface treatment and performance study on fiber tube reinforced polyvinylidene fluoride hollow fiber membranes. J Text Inst 111(7):1054–1063. https://doi.org/10.1080/00405000.2019.1681582

    Article  CAS  Google Scholar 

  12. Yang S, Wu C, Ji D, Xi Z, Chen K, Zhang X, Li S, Huang Y, Xiao C (2023) Preparation and characterization of fiber braided tube reinforced polyethylene hollow fiber membranes via thermally induced phase separation. J Environ Chem Eng 11(2):109375. https://doi.org/10.1016/j.jece.2023.109375

    Article  CAS  Google Scholar 

  13. Yan J, Xiao C, Ji D (2022) Robust preparation and reinforcement mechanism study of PVDF hollow fiber membrane with homogeneous fibers. Polym Test 108:107488. https://doi.org/10.1016/j.polymertesting.2022.107488

    Article  CAS  Google Scholar 

  14. Fan Z, Xiao C, Liu H, Huang Q, Zhao J (2015) Structure design and performance study on braid-reinforced cellulose acetate hollow fiber membranes. J Membr Sci 486:248–256. https://doi.org/10.1016/j.memsci.2015.03.066

    Article  CAS  Google Scholar 

  15. Bikerman JJ (1968) Stresses in proper adhints. J Adhes Sci Technol 2:192–263

    Google Scholar 

  16. Singh A, Reynolds N, Keating EM, Barnett AE, Barbour SK, Hughes DJ (2021) The effect of braid angle on the flexural performance of structural braided thermoplastic composite beams. Compos Struct 261:113314. https://doi.org/10.1016/j.compstruct.2020.113314

    Article  Google Scholar 

  17. Tate JS, Kelkar AD, Whitcomb JD (2006) Effect of braid angle on fatigue performance of biaxial braided composites. Int J Fatigue 28(10):1239–1247. https://doi.org/10.1016/j.ijfatigue.2006.02.009

    Article  CAS  Google Scholar 

  18. Wang C, Zhong Y, Bernad Adaikalaraj PF, Ji X, Roy A, Silberschmidt VV, Chen Z (2016) Strength prediction for bi-axial braided composites by a multi-scale modelling approach. J Mater Sci 51:6002–6018. https://doi.org/10.1007/s10853-016-9901-z

    Article  CAS  Google Scholar 

  19. Liu H, Wang S, Mao J, Xiao C, Huang Q (2017) Preparation and performance of braid-reinforced poly (vinyl chloride) hollow fiber membranes. J Appl Polym Sci 134(28):45068. https://doi.org/10.1016/S0045-6535(97)00275-0

    Article  Google Scholar 

  20. Fan Z, Xiao C, Liu H, Huang Q (2015) Preparation and performance of homogeneous braid reinforced cellulose acetate hollow fiber membranes. Cellulose 22:695–707. https://doi.org/10.1007/s10570-014-0466-1

    Article  CAS  Google Scholar 

  21. Agrawal S, Ingle N, Maity U, Jasra RV, Munshi P (2018) Effect of aqueous HCl with dissolved chlorine on certain corrosion-resistant polymers. ACS Omega 3:6692–6702. https://doi.org/10.1021/acsomega.8b00515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bhat NV, Deshmukh RR (2002) X-ray crystallographic studies of polymeric materials. Indian J Pure Appl Phys 40:361–366

    CAS  Google Scholar 

  23. Zhang X, Li YB, Zuo Y, Lv GY, Mu YH, Li H (2007) Morphology, hydrogen-bonding and crystallinity of nano-hydroxyapatite/polyamide 66 biocomposites. Compos - A: Appl Sci 38(3):843–848. https://doi.org/10.1016/j.compositesa.2006.08.002

    Article  CAS  Google Scholar 

  24. Ghiggi FF, Pollo LD, Cardozo NS, Tessaro IC (2017) Preparation and characterization of polyethersulfone/N-phthaloyl-chitosan ultrafiltration membrane with antifouling property. Eur Polym J 92:61–70. https://doi.org/10.1016/j.eurpolymj.2017.04.030

    Article  CAS  Google Scholar 

  25. Andrade-Guel M, Ávila-Orta CA, Cadenas-Pliego G, Cabello-Alvarado CJ, Pérez-Alvarez M, Reyes-Rodríguez P, Inam F, Cortés-Hernández DA, Quiñones-Jurado ZV (2020) Synthesis of nylon 6/modified carbon black nanocomposites for application in uric acid adsorption. Materials 13(22):5173. https://doi.org/10.3390/ma13225173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fornaro T, Burini D, Biczysko M, Barone V (2015) Hydrogen-bonding effects on infrared spectra from anharmonic computations: uracil–water complexes and uracil dimers. J Phys Chem A 119(18):4224–4236. https://doi.org/10.1021/acs.jpca.5b01561

    Article  CAS  PubMed  Google Scholar 

  27. Wu J, Cai LH, Weitz DA (2017) Tough self-healing elastomers by molecular enforced integration of covalent and reversible networks. Adv Mater 29(38):1702616. https://doi.org/10.1002/adma.201702616

    Article  CAS  Google Scholar 

  28. Zhu Y, Wu W, Gao M, Yan J, Wang B (2022) Molecular compatibility and hydrogen bonding mechanism of PES/PEI blends. Polymers 14(15):3046. https://doi.org/10.3390/polym14153046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tsuzuki S (2005) Interactions with aromatic rings. Intermol Forces Clust I:149–193. https://doi.org/10.1007/b135618

    Article  CAS  Google Scholar 

  30. Caldwell KB (2017) Adhesion and interphase properties of reinforced polymeric composites thesis, University of Washington

  31. Yao H, Wang Y, Chen C, Zhu J, Xiao X (2023) Poly (phthalazinone ether sulfone)/monomer casting nylon 6 composites. Polymer (Korea) 47(4):417–426. https://doi.org/10.7317/pk.2023.47.4.417

    Article  CAS  Google Scholar 

  32. Moattari RM, Mohammadi T, Rajabzadeh S, Dabiryan H, Matsuyama H (2021) Reinforced hollow fiber membranes: a comprehensive review. J Taiwan Inst Chem Eng 122:284–310. https://doi.org/10.1016/j.jtice.2021.04.052

    Article  CAS  Google Scholar 

  33. Liu J, Li P, Li Y, Xie L, Wang S, Wang Z (2009) Preparation of PET threads reinforced PVDF hollow fiber membrane. Desalination 249(2):453–457. https://doi.org/10.1016/j.desal.2008.11.010

    Article  CAS  Google Scholar 

  34. Zhang H, Li B, Sun D, Miao X, Gu Y (2018) SiO2-PDMS-PVDF hollow fiber membrane with high flux for vacuum membrane distillation. Desalination 429:33–43. https://doi.org/10.1016/j.desal.2017.12.004

    Article  CAS  Google Scholar 

  35. Chen M, Xiao C, Wang C, Liu H (2017) Study on the structural design and performance of novel braid-reinforced and thermostable poly (m-phenylene isophthalamide) hollow fiber membranes. RSC Adv 7(33):20327–20335. https://doi.org/10.1039/C7RA01171G

    Article  CAS  Google Scholar 

  36. Zhou Z, Rajabzadeh S, Fang L, Miyoshi T, Kakihana Y, Matsuyama H (2017) Preparation of robust braid-reinforced poly (vinyl chloride) ultrafiltration hollow fiber membrane with antifouling surface and application to filtration of activated sludge solution. Mater Sci Eng C 77:662–671. https://doi.org/10.1016/j.msec.2017.03.277

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Toraj Mohammadi would like to thank Iran National Science Foundation (INSF) for supporting the research (Grant number 4030928).

Author information

Authors and Affiliations

Authors

Contributions

Rozita M Moattari contributed to conceptualization, data curation, methodology, formal analysis, investigation, visualization, validation, writing—original draft, and writing—review & editing. Saeid Rajabzadeh and Toraj Mohammadi contributed to conceptualization, methodology, reviewing and editing, resource, funding acquisition, writing—review and editing, and supervision. Hadi Dabiryan contributed to conceptualization, methodology, reviewing and editing, and supervision.

Corresponding authors

Correspondence to Toraj Mohammadi or Saied Rajabzadeh.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moattari, R.M., Mohammadi, T., Rajabzadeh, S. et al. Enhancement of bursting pressure resistance of braid-reinforced polyether sulfone hollow fiber composites. Polym. Bull. (2024). https://doi.org/10.1007/s00289-024-05291-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-024-05291-0

Keywords

Navigation