Skip to main content
Log in

Soil burial degradation of bio-composite films from poly(lactic acid), natural rubber, and rice straw

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Agricultural activities contribute to numerous waste problems and have emerged as a significant environmental concern. Nondegradable plastic residues decompose, releasing microplastics and affecting ecosystems and the environment. Consequently, biodegradable bio-composite films consisting of polylactic acid (PLA), natural rubber (NR), and rice straw (RS) have been developed with the aim of using them in agricultural applications. In this study, the PLA/NR blend, at a fixed ratio of 60/40 wt%, was filled with 3 and 5 wt% RS powder and extruded through a slit die into films. The biodegradability of all films was examined after being buried for 90 days in soil with a moisture content of 30% by weight. The neat PLA film showed the lowest weight loss percentage, 3.33%, suggesting a comparatively slower degradation rate in comparison to the PLA/NR(60:40) blend and all bio-composite films. The presence of 40 wt% NR in the film helped accelerate the biodegradation process during soil burial. The film produced from PLA/NR 60:40 wt% matrix filled with RS at 5 wt% led to rapid degradation, leading to a weight loss of 8.30%. From SEM micrographs, the morphology of all polymers after burial in soil showed fractures, the formation of pores, and obvious surface indications of fungi growing. The content of carbon decreased after soil burial, while oxygen content increased, and nitrogen was detected. The XRD analysis revealed low crystallinity in the neat PLA, consistent with the DSC analysis. The addition of NR and RS to the composites led to an increase in the crystallinity of PLA phase. All investigated materials exhibited an increase in crystallinity after being buried in soil. This research demonstrates that bio-composite films manufactured from the PLA/NR(60:40) blend filled with RS degrade more easily than unmodified PLA film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Malafeev KV, Apicella A, Incarnato L, Scarfato P (2023) Understanding the impact of biodegradable microplastics on living organisms entering the Food Chain: a review. Polymers 15:1–26. https://doi.org/10.3390/polym15183680

    Article  CAS  Google Scholar 

  2. Da Costa JP, Nunes AR, Santos PSM, Girão AV, Duarte AC, Rocha-Santos T (2018) Degradation of polyethylene microplastics in seawater: insights into the environmental degradation of polymers. J Environ Sci Health Part A 53:866–875. https://doi.org/10.1080/10934529.2018.1455381

    Article  CAS  Google Scholar 

  3. Raj VA, Sankar K, Narayanasamy P, Moorthy IG, Sivakumar N, Rajaram SK, Karuppiah P, Shaik MR, Alwarthan A, Oh TH, Shaik B (2023) Development and characterization of Bio-based Composite films for Food Packing Applications using boiled Rice Water and Pistacia vera Shells. Polymers 15:1–18. https://doi.org/10.3390/polym15163456

    Article  CAS  Google Scholar 

  4. Rebelo RC, Goncalves LPC, Fonseca AC, Fonseca J, Rola M, Coelho JFJ, Rola F, Serra AC (2022) Increased degradation of PLA/PBAT blends with organic acids and derivatives in outdoor weathering and marine environment. Polymer 256:125223. https://doi.org/10.1016/j.polymer.2022.125223

    Article  CAS  Google Scholar 

  5. Taib NAAB, Rahman MR, Huda D, Kuok KK, Hamdan S, Bakri MKB, Julaihi MRMB, Khan A (2023) A review on poly lactic acid (PLA) as a biodegradable polymer. Polym Bull 80:1179–1213. https://doi.org/10.1007/s00289-022-04160-y

    Article  CAS  Google Scholar 

  6. Zaaba NF, Jaafar M (2020) A review on degradation mechanisms of polylactic acid: Hydrolytic, photodegradative, microbial, and enzymatic degradation. Polym Eng Sci 60:2061–2075. https://doi.org/10.1002/pen.25511

    Article  CAS  Google Scholar 

  7. Janczak K, Dabrowska GB, Raszkowska-Kaczor A, Kaczor D, Hrynkiewicz K, Richert A (2020) Biodegradation of the plastics PLA and PET in cultivated soil with the participation of microorganisms and plants. Int Biodeterior Biodegrad 155:1–10. https://doi.org/10.1016/j.ibiod.2020.105087

    Article  CAS  Google Scholar 

  8. Bubpachat T, Sombatsompop N, Prapagdee B (2023) Isolation and role of polylactic acid-degrading bacteria on degrading enzymes productions and PLA biodegradability at mesophilic conditions. Polym Degrad Stab 152:75–85. https://doi.org/10.1016/j.polymdegradstab.2018.03.023

    Article  CAS  Google Scholar 

  9. Rakmae S, Lorprayoon C, Ekgasit S, Suppakarn N (2013) Influence of heat-treated bovine bone-derived Hydroxyapatite on Physical properties and in vitro degradation behavior of poly (lactic acid) composites. Polym Plast Technol Eng 52:1043–1053. https://doi.org/10.1080/03602559.2013.769580

    Article  CAS  Google Scholar 

  10. Iglesias-Montes ML, D’Amico DA, Malbos LB, Seoane IT, Cyras VP, Manfredi LB (2023) Thermal degradation kinetics of completely biodegradable and Biobased PLA/PHB blends. Thermochim Acta 725:179530. https://doi.org/10.1016/j.tca.2023.179530

    Article  CAS  Google Scholar 

  11. Chen Y, Yuan D, Xu C (2014) Dynamically vulcanized biobased polylactide/natural rubber blend material with continuous cross-linked rubber phase. ACS Appl Mater Interfaces 6:3811–3816. https://doi.org/10.1021/am5004766

    Article  CAS  PubMed  Google Scholar 

  12. Xu C, Yuan D, Fu L, Chen Y (2014) Physical blend of PLA/NR with co-continuous phase structure: Preparation, rheology property, mechanical properties and morphology. Polym Test 37:94–101. https://doi.org/10.1016/j.polymertesting.2014.05.005

    Article  CAS  Google Scholar 

  13. Mohammad NNB, Arsad A, Rahmat AR, Abdullah Sani NS, Ali Mohsin ME (2016) Influence of compatibilizer on the structure properties of polylactic acid/natural rubber blends. Polym Sci Ser A 58:177–185. https://doi.org/10.1134/S0965545X16020164

    Article  CAS  Google Scholar 

  14. Buys YF, Aznan ANA, Anuar (2017) Mechanical properties, morphology, and hydrolytic degradatio, behavior of polylactic acid / natural rubber blends. Mater Sci Eng 290:1–8. https://doi.org/10.1088/1757-899X/290/1/012077

    Article  Google Scholar 

  15. Sookprasert P, Hinchiranan N (2017) Morphology, mechanical and thermal properties of poly(lactic acid) (PLA)/natural rubber (NR) blends compatibilized by NR-graft-PLA. J Mater Res 32:788–800. https://doi.org/10.1557/jmr.2017.9

    Article  ADS  CAS  Google Scholar 

  16. Tertyshnaya YV, Karpova SG, Podzorov MV, Khvatov AV, Moskovskiy MN (2022) Thermal properties and dynamic characteristics of Electrospun Polylactide/Natural Rubber fibers during disintegration in Soil. Polymers 14:1–16. https://doi.org/10.3390/polym14051058

    Article  CAS  Google Scholar 

  17. Lertphirun K, Srikulkit K (2019) Properties of Poly(Lactic Acid) filled with hydrophobic Cellulose/SiO2 composites. Int J Polym Sci 2019:1–8. https://doi.org/10.1155/2019/7835172

    Article  CAS  Google Scholar 

  18. Yetis F, Liu X, Sampson WW, Gong RH (2023) Biodegradation of composites of Polylactic Acid and Microfibrillated Lignocellulose. J Polym Environ 31:698–708. https://doi.org/10.1007/s10924-022-02583-2

    Article  CAS  Google Scholar 

  19. Budin S, Jaafar M (2022) Comparative study on mechanical properties of virgin and recycled polylactic acid aging in natural weathering and seawater environment. Polym Bull 79:4841–4858. https://doi.org/10.1007/s00289-021-03756-0

    Article  CAS  Google Scholar 

  20. Gois GS, Santos ASF, Hernandez EP, Medeiros ES, Almeida YMB (2023) Biodegrada-tion of PLA/CNC composite modified with non-ionic surfactants. Polym Bull 80:11363–11377. https://doi.org/10.1007/s00289-022-04618-z

    Article  CAS  Google Scholar 

  21. Yadav S, Kumar P (2023) Effect of neem leaves and stock density of earthworm (Eisenia fetida) on quality of rice straw vermicompost. Adv Environ Res 12:51–64. https://doi.org/10.12989/aer.2023.12.1.051

    Article  CAS  Google Scholar 

  22. Yang Q, Ruan F, Wu H, Kan C, Wang G, Wang Z, Wang H, Xu Z, Wang H (2023) Effect of Chemical Treatment on Rice Straw Fiber Surface and properties of Straw/Polylactic Acid composites. J Nat Fibers 20:1–14. https://doi.org/10.1080/15440478.2023.2228486

    Article  CAS  Google Scholar 

  23. Beniwal P, Toor AP (2023) Advancement in tensile properties of polylactic acid composites reinforced with rice straw fibers. Ind Crops Prod 192:1–9. https://doi.org/10.1016/j.indcrop.2022.116098

    Article  CAS  Google Scholar 

  24. Sakai E, Qiu JH, Murata T, Kazushi I, Kobayashi J, Takahashi T (2011) Degradation characteristics of Rice Straw/Poly(Lactic Acid) composites. Adv Mat Res 391–392:1268–1272. https://doi.org/10.4028/www.scientific.net/amr.391-392.1268

    Article  Google Scholar 

  25. Barragán H, Pelacho A, Martín-Closas L (2016) Degradation of agricultural biodegradable plastics in the soil under laboratory conditions. Soil Res 54:216–224. https://doi.org/10.1071/SR15034

    Article  CAS  Google Scholar 

  26. Han Y et al (2020) Effects of Tensile stress and soil burial on mechanical and chemical degradation potential of Agricultural Plastic films. Sustainability 12:7985. https://doi.org/10.3390/su12197985

    Article  Google Scholar 

  27. La Mantia FP, Ascione L, Mistretta MC, Rapisarda M, Rizzarelli P (2020) Comparative investigation on the Soil Burial degradation Behaviour of Polymer films for Agriculture before and after photo-oxidation. Polymers 12:753. https://doi.org/10.3390/polym12040753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hongsriphan N, Pinpueng A (2019) Properties of Agricultural films prepared from biodegradable poly(Butylene Succinate) adding natural sorbent and fertilizer. J Polym Environ 27:434–443. https://doi.org/10.1007/s10924-018-1358-5

    Article  CAS  Google Scholar 

  29. Chen Y et al (2024) Biodegradable cellulose-base aerogel films with high solar emissivity for agricultural thermal management. https://doi.org/10.1007/s10570-024-05751-w. Cellulose

  30. Kyrikou I, Briassoulis D (2007) Biodegradation of Agricultural Plastic films: a critical review. J Polym Environ 15:125–150. https://doi.org/10.1007/s10924-007-0053-8

    Article  CAS  Google Scholar 

  31. Pongputthipat W, Ruksakulpiwat Y, Chumsamrong P (2022) Development of biodegradable biocomposite films from poly(lactic acid), natural rubber and rice straw. Polym Bull 80:10289–10307. https://doi.org/10.1007/s00289-022-04560-0

    Article  CAS  Google Scholar 

  32. Rong-or C, Pongputthipat W, Ruksakulpiwat Y, Chumsamrong P (2023) Poly(Lactic acid)/ Natural Rubber/ Rice straw Bio-composite films for Agricultural application. Proceedings of the International Polymer Conference of Thailand (PCT 13 Conference), Bangkok, Thailand, June 8–9

  33. Boonmee C, Kositanont C, Leejarkpai T (2016) Degradation of poly (lactic acid) under simulated landfill conditions. Environ Nat Resour 14:1–9. https://doi.org/10.14456/ennrj.2016.8

    Article  Google Scholar 

  34. Matta AK, Rao RU, Suman KNS, Rambabu V (2014) Preparation and characterization of biodegradable PLA/PCL Polymeric blends. Procedia Mater Sci 6:1266–1270. https://doi.org/10.1016/j.mspro.2014.07.201

    Article  CAS  Google Scholar 

  35. Fabian DRC, Durpekova S, Dusankova M, Cisar J, Drohsler P, Elich O, Borkova M, Cechmankova J, Sedlarik V (2023) Renewable poly(lactic acid)lignocellulose biocomposites for the enhancement of the Water Retention Capacity of the Soil. Polymers 15:1–18. https://doi.org/10.3390/polym15102243

    Article  CAS  Google Scholar 

  36. Elsawy MA, Kim KH, Park JW, Deep A (2017) Hydrolytic degradation of polylactic acid (PLA) and its composites. Renew Sust Energ Rev 79:1346–1352. https://doi.org/10.1016/j.rser.2017.05.143

    Article  CAS  Google Scholar 

  37. Karamanlioglu M, Alkan U (2019) Influence of time and room temperature on mechanical and thermal degradation of poly(lactic) acid. Therm Sci 23:383–390. https://doi.org/10.2298/TSCI181111051K

    Article  Google Scholar 

  38. Rosli NA, Ahmad I, Anuar FH, Abdullah I (2018) The contribution of eco-friendly bio-based blends on enhancing the thermal stability and biodegradability of poly(lactic acid). J Clean Prod 198:987–995. https://doi.org/10.1016/j.jclepro.2018.07.119

    Article  CAS  Google Scholar 

  39. Huang Y, Zhang C, Pan Y, Zhou Y, Jiang L, Dan Y (2013) Effect of NR on the hydrolytic degradation of PLA. Polym Degrad Stab 98:943–950. https://doi.org/10.1016/j.polymdegradstab.2013.02.018

    Article  CAS  Google Scholar 

  40. Rosli NA, Karamanlioglu M, Kargarzadeh H, Ahmad I (2021) Comprehensive explora-tion of natural degradation of poly(lactic acid) blends in various degradation media: a review. Int J Biol Macromol 187:732–741. https://doi.org/10.1016/j.ijbiomac.2021.07.196

    Article  CAS  PubMed  Google Scholar 

  41. Kalita NK, Damare NA, Hazarika D, Bhagabati P, Kalamdhad A, Katiyar V (2021) Biodegradation and characterization study of compostable PLA bioplastic containing algae biomass as potential degradation accelerator. Environ Chall 3:1–10. https://doi.org/10.1016/j.envc.2021.100067

    Article  CAS  Google Scholar 

  42. Zandi A, Zanganeh A, Hemmati F, Mohammadi-Roshandeh J (2019) Thermal and biodegradation properties of poly(lactic acid)/rice straw composites: efects of modifed pulping products. Iran Polym J 28:1–13. https://doi.org/10.1007/s13726-019-00709-3

    Article  CAS  Google Scholar 

  43. Alias NF, Ismail H, Ishak KMK (2021) Poly(lactic acid)/natural rubber/kenaf biocomposites production using poly(methyl methacrylate) and epoxidized natural rubber as co–compatibilizers. Iran Polym J 30:737–749. https://doi.org/10.1007/s13726-021-00927-8

    Article  CAS  Google Scholar 

  44. Rosdi FNM, Salim N, Roslan R, Bakar NHA, Sarmin SNS (2023) Potential Red Algae Fibre Waste as a raw material for Biocomposite. J Adv Res Appl Sci Eng Technol 30:303–310. https://doi.org/10.37934/araset.30.1.303310

    Article  Google Scholar 

  45. Shirazi RN, Aldabbagh F, Ronan W, Erxleben A, Rochev Y, McHugh P (2016) Effects of material thickness and processing method on poly(lactic-co-glycolic acid) degradation and mechanical performance. J Mater Sci: Mater 27:154. https://doi.org/10.1007/s10856-016-5760-z

    Article  CAS  Google Scholar 

  46. Tserki V, Matzinos P, Panayiotou C (2003) Effect of compatibilization on the performance of biodegradable composites using cotton fiber waste as filler. J Appl Polym Sci 88:1825–1835. https://doi.org/10.1002/app.11812

    Article  CAS  Google Scholar 

  47. Sriyapai P, Chansiri K, Sriyapai T (2018) Isolation and characterization of polyester-based plastics-degrading Bacteria from Compost soils. Microbiology 87:290–300. https://doi.org/10.1134/S0026261718020157

    Article  CAS  Google Scholar 

  48. Gkoutselis G, Rohrbach S, Harjes J, Obst M, Brachmann A, Horn MA, Rambold G (2021) Microplastics accumulate fungal pathogens in terrestrial ecosystems. Sci Rep 11:1–14. https://doi.org/10.1038/s41598-021-92405-7

    Article  CAS  Google Scholar 

  49. Banthao C, Kumpolsan P, Baimark Y, Wongkasemjit S, Pakkethati K (2020) Improvement the properties of poly(l-lactide) films with cellulose fiber from rice straw waste in agricultural products. Int J GEOMATE 18:43–48. https://doi.org/10.21660/2020.70.5716

    Article  Google Scholar 

  50. Yaacob ND, Ismail H, Ting SS (2016) Soil Burial of Polylactic Acid/Paddy Straw Powder Biocomposite. Bioresour 11:1255–1269. https://doi.org/10.15376/biores.11.1.1255-1269

    Article  CAS  Google Scholar 

  51. Diaz-Hernandez JL, Sanchez-Soto PJ, Serrano-Delgado A (2012) Biological nanostructures associated to iberulites: a SEM study. Curr Microscopy Contrib Adv Sci Technol 1:154–161

    Google Scholar 

  52. Wufuer R, Li W, Wang S, Duo J (2022) Isolation and degradation characteristics of PBAT Film degrading Bacteria. Int J Environ Res Public Health 19:1–12. https://doi.org/10.3390/ijerph192417087

    Article  CAS  Google Scholar 

  53. Velghe I, Buffel B, Vandeginste V, Thielemans W, Desplentere F (2023) Review on the degradation of poly(lactic acid) during Melt Processing. Polymers 15:1–33. https://doi.org/10.3390/polym15092047

    Article  CAS  Google Scholar 

  54. Feng Y, Hu Y, Yin J, Zhao G, Jiang W (2013) High impact poly(lactic acid)/Poly(ethylene octene) blends prepared by reactive blending. Polym Eng Sci 53:389–396. https://doi.org/10.1002/pen.23265

    Article  CAS  Google Scholar 

  55. Lorenzoa MLD, Androsch R (2016) Melting of α’- and α-Crystals of Poly(lactic acid). Proceedings of Paper presented at the AIP Conference (VIII International Conference on Times of Polymers and Composites), Naples, Italy, June

  56. Thongpin C, Klatsuwan S, Borkchaiyapoom P, Thongkamwong S (2013) Crystallization behavior of PLA in PLA/NR compared with dynamic Vulcanized PLA/NR. J Met Mater Min 23:53–59

    CAS  Google Scholar 

  57. Burkov A, Kraev A, Grishin M, Vesnin R, Fomin S, Iordanskii A (2021) Structural features and properties’ characterization of Polylactic Acid/Natural Rubber blends with Epoxidized Soybean Oil. Polymers 13:1–12. https://doi.org/10.3390/polym13071101

    Article  CAS  Google Scholar 

  58. Tisserat B, Joshee N, Mahapatra AK, Selling GW, Finkenstadt VL (2013) Physical and mechanical properties of extruded poly(lactic acid)-based Paulownia elongata biocomposites. Ind Crops Prod 44:88–96. https://doi.org/10.1016/j.indcrop.2012.10.030

    Article  CAS  Google Scholar 

  59. Bomfim ASC, Oliveira DM, Benini KCC, Cioffi MOH, Voorwald HJC, Rodrigue D (2023) Effect of spent Coffee grounds on the crystallinity and viscoelastic behavior of Polylactic Acid composites. Polymers 15:1–16. https://doi.org/10.3390/polym15122719

    Article  CAS  Google Scholar 

  60. Suksut B, Deeprasertkul C (2011) Effect of Nucleating agents on Physical properties of Poly(lactic acid) and its blend with Natural Rubber. J Polym Environ 19:288–296. https://doi.org/10.1007/s10924-010-0278-9

    Article  CAS  Google Scholar 

  61. Ming R, Yang G, Li Y, Wang R, Zhang H, Shao H (2015) Flax Fiber-Reinforced Polylactide Stereocomplex composites with enhanced Heat Resistance and Mechanical properties. Polym Compos 38:472–478. https://doi.org/10.1002/pc.23605

    Article  CAS  Google Scholar 

  62. Lv S, Zhang Y, Gu J, Tan H (2018) Soil burial-induced chemical and thermal changes in starch/poly (lactic acid) composites. Int J Biol Macromol 113:338–344. https://doi.org/10.1016/j.ijbiomac.2018.02.139

    Article  CAS  PubMed  Google Scholar 

  63. Silva APD, Pereira MDP, Passador FR, Montagna LS (2020) PLA/Coffee grounds composites: a study of Photodegradation and Biodegradation in Soil. Macromol Symp 394:1–9. https://doi.org/10.1002/masy.202000091

    Article  CAS  Google Scholar 

  64. Palsikowski PA, Kuchnier CN, Pinheiro IF, Morales AR (2017) Biodegradation in Soil of PLA/PBAT blends compatibilized with Chain Extender. J Polym Environ 26:330–341. https://doi.org/10.1007/s10924-017-0951-3

    Article  CAS  Google Scholar 

  65. Lv S, Liu X, Gu J, Jiang Y, Tan H, Zhang Y (2017) Microstructure analysis of polylactic acid-based composites during degradation in soil. Int Biodeterior Biodegrad 122:53–60. https://doi.org/10.1016/j.ibiod.2017.04.017

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Suranaree University of Technology (SUT), Thailand Science Research and Innovation (TSRI), and the National Science, Research, and Innovation Fund (NSRF) (NRIIS number 160344).

Author information

Authors and Affiliations

Authors

Contributions

C.R. wrote the main manuscript.W.P. and C.R. prepared all the figures and tables.P.C. and Y.R. proved the manuscript.All authors reviewed the manuscript.

Corresponding author

Correspondence to Pranee Chumsamrong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rong-or, C., Pongputthipat, W., Ruksakulpiwat, Y. et al. Soil burial degradation of bio-composite films from poly(lactic acid), natural rubber, and rice straw. Polym. Bull. (2024). https://doi.org/10.1007/s00289-024-05229-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-024-05229-6

Keywords

Navigation