Skip to main content

Advertisement

Log in

Biodegradable polyester-polybutylene succinate (PBS): a review

  • REVIEW PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Toward the end of the century, plastic waste treatment and recycling would be major issue to be addressed. Thus, to overcome the problem of polymer non-biodegradability, study and application of biodegradable polymers is important. Biodegradable polymers are those which can be broken down into smaller oligomers or monomers upon action of radiation, moisture, enzymes and chemicals. Poly(butylene) succinate (PBS) is one of the biodegradable polymers manufactured and studied for a long time. This review majorly focuses on its synthesis, blends, copolymers, composites, biodegradation studies, applications and processability. PBS copolymers are synthesized using multiple approaches such as monomer, polymer and application based. PBS blends are studied with PP, poly(propylene carbonate), Soy protein isolate and poly(lactic) acid. The PBS and its blends find its application in agricultural films, packaging, tableware, and biomedical applications. PBS composites were prepared using synthetic organic, inorganic fillers and bio-based fillers to improve its mechanical performance, flame retardancy, biodegradabilit,y etc., based on type of reinforcement. Biodegradability is one the property of PBS which will help in maintaining circular economy and sustainability.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

PBSC:

Poly(butylene succinate-co-ɛ-caprolactone)

PBES and PBDEGS:

Poly(butylene succinate-co-ethylene succinate) and poly(butylene succinate-co-diethylene succinate)

PLLA-b-PBS-b-PLLA:

Poly(L-lactide-b-butylene succinate-b-L-lactide)

PBST:

Poly(butylene succinate-co-butylene terephthaloyldioxy dibenzoates)

PBSP:

Poly(butylene succinate)-block-poly(propylene glycol)

PDLA-b-PBS-b-PDLA, PLLA-b-PBS-b-PLLA:

Poly(D-lactide-b-butylene succinate-b-D-lactide), poly(L-lactide-b-butylene succinate-b-L-lactide)

PBCS:

Poly (butylene succinate-co-cyclohexanedimethylene succinate)

P(BS-co-BAz):

Butylene succinate-co-butylene azelate)

PBAS:

Poly(butylene succinate-co-butylene adipate)

P(BS-co-BF):

Poly(butylene succinate-co-butylene fumarate)

PBSuBSe:

Poly(butylene succinate-co-butylene sebacate)

P(BS-co-DEGS):

Poly(butylene succinate-co-diethylene glycol succinate)

P(BS-co-RA), P(BS-co-RA)-g-VIB:

Poly(butylene succinate-co-ricinoleic acid), poly(butylene succinate-co-ricinoleic acid)-graft- 3-hexadecyl-1-vinylimidazolium bromide

PBSF:

Poly(butylene succinate-co-butylene furandicarboxylate)

PBSLA:

Poly(butylene succinate-co-DL-lactide)

PBSVAL:

Poly(butylene succinate)-co-oligo(L-valine)

PBSPS:

Poly(butylene succinate-co-propylene succinate)

PBPSu:

Poly(butylene succinate-co-propylene succinate)

PBMPSu:

Poly(butylene succinate-co-2-methyl-1,3-propylene succinate)

PBSDG:

Poly(butylene succinate)-based copolymers including diglycollate moiety

PBSX (where X-> M/A/O):

Poly(butylene succinate) copolymer with 3-alkoxy-1,2-propanediol as the X component where (M- > 3-methoxy-1,2-propanediol, A- > 3-allyloxy-1,2-propanediol, O- > 3-octadecyloxy-1,2-propanediol)

PBS-b-PDGS:

Poly(butylene succinate)-b-poly(diethylene glycol succinate)

PBPSu:

Poly(butylene succinate) copolymerised with 1,2-propylene succinate

P(BS-b-PT):

Poly(butylene succinate) copolymerised with 1,2-polypropylene terephthalate

PBSEG:

Poly(butylene succinate) copolymerised with poly(ethylene glycol)

PBSOS:

Poly(butylene succinate) copolymerised with 1,2-octanediol

P(BS-co-HS):

Poly(butylene succinate-co-hexamethylene succinate)

PBS-b-PBC:

Poly(butylene succinate)-b-poly(butylene carbonate)

PBS-DLS:

Poly(butylene succinate-co-dilinoleic succinate)

PBSBI:

Poly(butylene succinate-co-butylene itaconate)

P(BS-BMS):

Poly(butylene succinate-co-Butylene 2-Methylsuccinate)

P(BS-co-BDFA):

Poly(butylene succinate-co-butylene dimerized fatty acid)

PBSD:

Poly(butylene succinate) copolymerised with 9,10-dihydro-10-[2,3-di(hydroxycarbonyl)propyl]-10-phosphaphenanthrene-10-oxide

P(BS-co-BO):

Poly(butylene succinate-co-butylene oxabicyclate)

P(BS-co-BM):

Poly(butylene succinate-co-butylene malate)

P(BS-co-BBM):

Poly(butylene succinate-co- benzyl-protected butylene malate)

PFS-PBS:

Poly(2,5-furandimethylene succinate)-b-poly(butylene succinate)

P(BS-ran-BA):

Poly(butylene succinate-ran-butylene adipate)

PBAS:

Poly(butylene succinate) copolymerised with adipic acid

PBH:

Poly(butylene succinate-co-10-hydroxydecanoate)

PBS-b-PES:

Poly(butylene succinate)-b-poly(ethylene succinate)

HDI:

Hexamethylene diisocyanate(used as chain extender)

PPA:

Polyphosphoric acid(used as heat stabilizer)

SA:

Succinic acid

SAh:

Succinic anhydride

DMS:

Dimethyl succinate

DES:

Diethyl succinate

BD:

1,4-Butanediol

ɛ-CL:

ɛ-Caprolactone

EG:

Ethylene glycol

DEG:

Diethylene glycol

LLA:

L-lactide

DLA:

D-lactide

MTB:

Dimethyl-4,4-(terephthaloyldioxy) dibenzoate

PPG:

Poly(propylene glycol)

CHDM:

Cyclohexanedimethanol

DMAz:

Dimethylazelate

DMA:

Dimethyl adipate

DMF:

Dimethyl fumarate

DMSe:

Dimethyl sebacate

RA:

Ricinoleic acid

VIB:

3-Hexadecyl-1-vinylimidazolium bromide

FDCA:

2,5-Furandicarboxylic acid

OLA:

DL-oligo(lactic acid)

OVL:

Oligo(L-valine)

PD:

1,3-Propanediol/1,2-propanediol

MPD:

2-Methyl-1,3-propanediol

DA:

Diglycollic acid

X- > (M,A,O):

(M- 3-methoxy-1, 2-propanediol, A- 3-allyloxy-1, 2-propanediol, O- 3-octadecyloxy-1, 2-propanediol)

DMT:

Dimethyl terephthalate

PEG:

Poly(ethylene glycol)

OD:

1,2-Octanediol

HD:

1,6-Hexanediol

DMC:

Dimethyl carbonate

DLA-OH:

Dimer linoleic diol

ITA:

Itaconic acid

MSA:

2-Methylsuccinic acid

DFA:

Dimerized fatty acid (9-nonyl-10-octylnonadecanedioic acid)

DDP:

9,10-Dihydro-10-[2,3-di(hydroxycarbonyl) propyl]-10-phosphaphenanthrene-10-oxide

OBCA:

Oxabicyclodicarboxylic anhydride

BDMM:

Benzyl-Protected Dimethyl Malate

BHF:

2,5-Bis(hydroxymethyl)furan

AA:

Adipic acid

HDA:

10-Hydroxydecanoic acid

References

  1. Shogren RL, Bagley EB (1999) Natural polymers as advanced materials: some research needs and directions. ACS Symp Ser. https://doi.org/10.1021/bk-1999-0723.ch001

    Article  Google Scholar 

  2. Cury BSF, Castro AD, Klein SI, Evangelista RC (2009) Modeling a system of phosphated cross-linked high amylose for controlled drug release. Part 2: physical parameters, cross-linking degrees and drug delivery relationships. Int J Pharm 371:8–15. https://doi.org/10.1016/j.ijpharm.2008.12.010

    Article  CAS  PubMed  Google Scholar 

  3. Désévaux C, Dubreuil P, Lenaerts V (2002) Characterization of crosslinked high amylose starch matrix implants: 2. In vivo release of ciprofloxacin. J Control Release 82:95–103. https://doi.org/10.1016/S0168-3659(02)00132-3

    Article  PubMed  Google Scholar 

  4. Xu J, Manepalli PH, Zhu L, Narayan-Sarathy S, Alavi S (2019) Morphological, barrier and mechanical properties of films from poly (butylene succinate) reinforced with nanocrystalline cellulose and chitin whiskers using melt extrusion. J Polym Res 26:1–10. https://doi.org/10.1007/s10965-019-1783-8

    Article  CAS  Google Scholar 

  5. Krishnan PSG, Kulkarni ST (2008) Polyester resins. Polyest Polyam 2008:3–40. https://doi.org/10.1533/9781845694609.1.3

    Article  Google Scholar 

  6. Muthuraj R, Misra M, Mohanty AK (2015) Hydrolytic degradation of biodegradable polyesters under simulated environmental conditions. J Appl Polym Sci. https://doi.org/10.1002/app.42189

    Article  Google Scholar 

  7. Zhang Y, Lu B, Lv F, Guo W, Ji J, Chu PK, Zhang C (2012) Effect of processing conditions on poly(butylene succinate) foam materials. J Appl Polym Sci 126:756–761. https://doi.org/10.1002/app.36867

    Article  CAS  Google Scholar 

  8. Vytejčková S, Vápenka L, Hradecký J, Dobiáš J, Hajšlová J, Loriot C, Vannini L, Poustka J (2017) Testing of polybutylene succinate based films for poultry meat packaging. Polym Test 60:357–364. https://doi.org/10.1016/j.polymertesting.2017.04.018

    Article  CAS  Google Scholar 

  9. Shih YF, Lee WC, Jeng RJ, Huang CM (2006) Water bamboo husk-reinforced poly(butylene succinate) biodegradable composites. J Appl Polym Sci 99:188–199. https://doi.org/10.1002/app.22220

    Article  CAS  Google Scholar 

  10. Ren L, Wang Y, Ge J, Lu D, Liu Z (2015) Enzymatic synthesis of high-molecular-weight poly(butylene succinate) and its copolymers. Macromol Chem Phys 216:636–640. https://doi.org/10.1002/macp.201400550

    Article  CAS  Google Scholar 

  11. Sugihara S, Toshima K, Matsumura S (2006) New strategy for enzymatic synthesis of high-molecular-weight poly(butylene succinate) via cyclic oligomers. Macromol Rapid Commun 27:203–207. https://doi.org/10.1002/marc.200500723

    Article  CAS  Google Scholar 

  12. Debuissy T, Pollet E, Avérous L (2017) Synthesis and characterization of biobased poly(butylene succinate-ran-butylene adipate). Analysis of the composition-dependent physicochemical properties. Eur Polym J 87:84–98. https://doi.org/10.1016/j.eurpolymj.2016.12.012

    Article  CAS  Google Scholar 

  13. Bhatia A, Gupta RK, Bhattacharya SN, Choi HJ (2007) Compatibility of biodegradable poly (lactic acid) (PLA) and poly (butylene succinate) (PBS) blends for packaging application Korea. Aust Rheol J 19:125–131

    Google Scholar 

  14. Rafiqah SA, Khalina A, Harmaen AS, Tawakkal IA, Zaman K, Asim M, Nurrazi MN, Lee CH (2021) A review on properties and application of bio-based poly(butylene succinate). Polymers (Basel) 13:1436. https://doi.org/10.3390/polym13091436

    Article  CAS  PubMed  Google Scholar 

  15. Azim H, Dekhterman A, Jiang Z, Gross RA (2006) Candida antarctica lipase B-catalyzed synthesis of poly(butylene succinate): shorter chain building blocks also work. Biomacromolecules 7:3093–3097. https://doi.org/10.1021/bm060574h

    Article  CAS  PubMed  Google Scholar 

  16. Ferreira LP, Moreira AN, Pinto JC, De Souza FG (2015) Synthesis of poly(butylene succinate) using metal catalysts. Polym Eng Sci 55:1889–1896. https://doi.org/10.1002/pen.24029

    Article  CAS  Google Scholar 

  17. Takahashi H, Hayakawa T, Ueda M (2000) Convenient synthesis of poly(butylene succinate) catalyzed by distannoxane. Chem Lett 29:684–685. https://doi.org/10.1246/cl.2000.684

    Article  Google Scholar 

  18. Jacquel N, Freyermouth F, Fenouillot F, Rousseau A, Pascault JP, Fuertes P, Saint-Loup R (2011) Synthesis and properties of poly(butylene succinate): efficiency of different transesterification catalysts. J Polym Sci Part A Polym Chem 49:5301–5312. https://doi.org/10.1002/pola.25009

    Article  CAS  Google Scholar 

  19. Lai S, Gao Y, Yue L (2015) Heterogeneous catalytic synthesis of poly(butylene succinate) by attapulgite-supported Sn catalyst. J Appl Polym Sci 132:1–9. https://doi.org/10.1002/app.41729

    Article  CAS  Google Scholar 

  20. Velmathi S, Nagahata R, Sugiyama JI, Takeuchi K (2005) A rapid eco-friendly synthesis of poly(butylene succinate) by a direct polyesterification under microwave irradiation. Macromol Rapid Commun 26:1163–1167. https://doi.org/10.1002/marc.200500176

    Article  CAS  Google Scholar 

  21. Tachibana Y, Masuda T, Funabashi M, Kunioka M (2010) Chemical synthesis of fully biomass-based poly(butylene succinate) from inedible-biomass-based furfural and evaluation of its biomass carbon ratio. Biomacromolecules 11:2760–2765. https://doi.org/10.1021/bm100820y

    Article  CAS  PubMed  Google Scholar 

  22. Tokiwa Y, Suzuki T (1977) Hydrolysis of polyesters by lipases. Nature 270:76–78. https://doi.org/10.1038/270076a0

    Article  CAS  PubMed  Google Scholar 

  23. MacDonald RT, McCarthy SP, Gross RA (1996) Enzymatic degradability of poly(lactide): effects of chain stereochemistry and material crystallinity. Macromolecules 29:7356–7361. https://doi.org/10.1021/ma960513j

    Article  CAS  Google Scholar 

  24. Mochizuki M, Mukai K, Yamada K, Ichise N, Murase S, Iwaya Y (1997) Structural effects upon enzymatic hydrolysis of poly(butylene succinate-co-ethylene succinate)s. Macromolecules 30:7403–7407. https://doi.org/10.1021/ma970036k

    Article  CAS  Google Scholar 

  25. Cho K, Lee J, Kwon K (2001) Hydrolytic degradation behavior of poly(butylene succinate)s with different crystalline morphologies. J Appl Polym Sci 79:1025–1033

    Article  CAS  Google Scholar 

  26. Tsuji H, Yamamura Y, Ono T, Saeki T, Daimon H, Fujie K (2008) Hydrolytic degradation and monomer recovery of poly(butylene succinate) and poly(butylene succinate/adipate) in the melt. Macromol React Eng. https://doi.org/10.1002/mren.200800027

    Article  Google Scholar 

  27. Pathak-Navneet VM (2017) Review on the current status of polymer degradation: a microbial approach. Bioresour Bioprocess. https://doi.org/10.1186/s40643-017-0145-9

    Article  Google Scholar 

  28. Shah AA, Kato S, Shintani N, Kamini NR, Nakajima-Kambe T (2014) Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters. Appl Microbiol Biotechnol 98:3437–3447. https://doi.org/10.1007/s00253-014-5558-1

    Article  CAS  PubMed  Google Scholar 

  29. Tokiwa Y, Jarerat A (2003) Microbial degradation of aliphatic polyesters. Macromol Symp 201:45. https://doi.org/10.1002/masy.200351131

    Article  CAS  Google Scholar 

  30. Anankaphong H, Pentrakoon D, Junkasem J (2015) Effect of rubberwood content on biodegradability of poly (butylene succinate) biocomposites. Int J Polym Sci. https://doi.org/10.1155/2015/368341

    Article  Google Scholar 

  31. Kim HS, Kim HJ, Lee JW, Choi IG (2006) Biodegradability of bio-flour filled biodegradable poly(butylene succinate) bio-composites in natural and compost soil. Polym Degrad Stab 91:1117–1127. https://doi.org/10.1016/j.polymdegradstab.2005.07.002

    Article  CAS  Google Scholar 

  32. Vandesteene M, Jacquel N, Saint-Loup R, Boucard N, Carrot C, Rousseau A, Fenouillot F (2016) Synthesis of branched poly(butylene succinate): structure properties relationship. Chin J Polym Sci 34:873–888. https://doi.org/10.1007/s10118-016-1805-5

    Article  CAS  Google Scholar 

  33. Ferreira LP, da Cunha BP, Kuster RM, Pinto JC, Souza MN, de Souza FG (2017) Synthesis and chemical modification of poly(butylene succinate) with rutin useful to the release of silybin. Ind Crops Prod 97:599–611. https://doi.org/10.1016/j.indcrop.2016.12.064

    Article  CAS  Google Scholar 

  34. Liu X, Li C, Zhang D, Xiao Y, Guan G (2006) Synthesis, characterization and properties of poly(butylene succinate) modified with rosin maleopimaric acid anhydride. Polym Int 55:545–551. https://doi.org/10.1002/pi.2006

    Article  CAS  Google Scholar 

  35. Zeng JB, Jiao L, Li YD, Srinivasan M, Li T, Wang YZ (2011) Bio-based blends of starch and poly(butylene succinate) with improved miscibility, mechanical properties, and reduced water absorption. Carbohydr Polym 83:762–768. https://doi.org/10.1016/j.carbpol.2010.08.051

    Article  CAS  Google Scholar 

  36. Ahn BD, Kim SH, Kim YH, Yang JS (2001) Synthesis and characterization of the biodegradable copolymers from succinic acid and adipic acid with 1,4-butanediol. J Appl Polym Sci 82:2808–2826. https://doi.org/10.1002/app.2135

    Article  CAS  Google Scholar 

  37. Kang ZH, Wang CL (2013) Synthesis and crystallization of poly(butylenes succinate-block-butylene sebacate). Adv Mater Res 750–752:1313–1317. https://doi.org/10.4028/www.scientific.net/AMR.750-752.1313

    Article  CAS  Google Scholar 

  38. Wang J, Zheng L, Li C, Zhu W, Zhang D, Guan G, Xiao Y (2012) Synthesis and properties of biodegradable poly(ester-co-carbonate) multiblock copolymers comprising of poly(butylene succinate) and poly(butylene carbonate) by chain extension. Ind Eng Chem Res 51:10785–10792. https://doi.org/10.1021/ie300547g

    Article  CAS  Google Scholar 

  39. Li SL, Wu F, Yang Y, Wang YZ, Zeng JB (2015) Synthesis, characterization and isothermal crystallization behavior of poly(butylene succinate)-b-poly(diethylene glycol succinate) multiblock copolymers. Polym Adv Technol 26:1003–1013. https://doi.org/10.1002/pat.3519

    Article  CAS  Google Scholar 

  40. Zhou C, Wei Z, Yu Y, Li Y (2015) Synthesis and crystallization behavior of novel poly(butylene succinate) copolyesters containing phosphorus pendent groups. J Therm Anal Calorim 120:1799–1810. https://doi.org/10.1007/s10973-015-4511-6

    Article  CAS  Google Scholar 

  41. Cao A, Okamura T, Nakayama K, Inoue Y, Masuda T (2002) Studies on syntheses and physical properties of biodegradable aliphatic poly(butylene succinate-co-ethylene succinate)s and poly(butylene succinate-co-diethylene glycol succinate)s. Polym Degrad Stab 78:107–117. https://doi.org/10.1016/S0141-3910(02)00124-6

    Article  CAS  Google Scholar 

  42. Cao A, Okamura T, Ishiguro C, Nakayama K, Inoue Y, Masuda T (2001) Studies on syntheses and physical characterization of biodegradable aliphatic poly(butylene succinate-co-ε-caprolactone)S. Polymer (Guildf) 43:671–679. https://doi.org/10.1016/S0032-3861(01)00658-9

    Article  Google Scholar 

  43. Wan T, Du T, Liao S (2014) Biodegradable poly (butylene succinate-co-cyclohexanedimethylene succinate): synthesis, crystallization, morphology, and rheology. J Appl Polym Sci 131:1–9. https://doi.org/10.1002/app.40103

    Article  CAS  Google Scholar 

  44. Du J, Zheng Y, Xu L (2006) Biodegradable liquid crystalline aromatic/aliphatic copolyesters. Part I: synthesis, characterization, and hydrolytic degradation of poly(butylene succinate-co-butylene terephthaloyldioxy dibenzoates). Polym Degrad Stab 91:3281–3288. https://doi.org/10.1016/j.polymdegradstab.2006.06.006

    Article  CAS  Google Scholar 

  45. Nikolic MS, Djonlagic J (2001) Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene adipate)s. Polym Degrad Stab 74:263–270. https://doi.org/10.1016/S0141-3910(01)00156-2

    Article  CAS  Google Scholar 

  46. Zhou XM (2012) Synthesis and characterization of polyester copolymers based on poly(butylene succinate) and poly(ethylene glycol). Mater Sci Eng C 32:2459–2463. https://doi.org/10.1016/j.msec.2012.07.025

    Article  CAS  Google Scholar 

  47. Liu Q, Zhou XM (2015) Syntheses and physical characterization of biodegradable poly(butylene succinate-co-butylene itaconate) copolymers. J Macromol Sci Part A Pure Appl Chem 52:745–751. https://doi.org/10.1080/10601325.2015.1063875

    Article  CAS  Google Scholar 

  48. Huang X, Li C, Zheng L, Zhang D, Guan G, Xiao Y (2009) Synthesis, characterization and properties of biodegradable poly(butylene succinate)-block-poly(propylene glycol)segmented copolyesters. Polym Int 58:893–899. https://doi.org/10.1002/pi.2609

    Article  CAS  Google Scholar 

  49. Oishi A, Zhang M, Nakayama K, Masuda T, Taguchi Y (2006) Synthesis of poly(butylene succinate) and poly(ethylene succinate) including diglycollate moiety. Polym J 38:710–715. https://doi.org/10.1295/polymj.PJ2005206

    Article  CAS  Google Scholar 

  50. Sokołowska M, El Fray M (2020) “Green” poly(butylene succinate-co-dilinoleic succinate) copolymers synthesized using candida antarctica lipase B (CAL-B) as biocatalyst. Proceedings 69:33. https://doi.org/10.3390/cgpm2020-07221

    Article  Google Scholar 

  51. Ba C, Yang J, Hao Q, Liu X, Cao A (2003) Syntheses and physical characterization of new aliphatic triblock poly(L-lactide-b-butylene succinate-b-L-lactide)s bearing soft and hard biodegradable building blocks. Biomacromolecules 4:1827–1834. https://doi.org/10.1021/bm034235p

    Article  CAS  PubMed  Google Scholar 

  52. Jia L, Yin L, Li Y, Li Q, Yang J, Yu J, Shi T, Fang Q, Cao A (2005) New enantiomeric polylactide-block-poly(butylene succinate)-block- polylactides: syntheses, characterization and in situ self-assembly. Macromol Biosci 5:526–538. https://doi.org/10.1002/mabi.200400227

    Article  CAS  PubMed  Google Scholar 

  53. Zheng L, Li C, Huang W, Huang X, Zhang D, Guan G, Xiao Y, Wang D (2011) Synthesis of high-impact biodegradable multiblock copolymers comprising of poly(butylene succinate) and poly(1,2-propylene succinate) with hexamethylene diisocyanate as chain extender. Polym Adv Technol 22:279–285. https://doi.org/10.1002/pat.1530

    Article  CAS  Google Scholar 

  54. Zheng L, Li C, Zhang D, Guan G, Xiao Y, Wang D (2011) Synthesis, characterization and properties of novel biodegradable multiblock copolymers comprising poly(butylene succinate) and poly(1,2-propylene terephthalate) with hexamethylene diisocyanate as a chain extender. Polym Int 60:666–675. https://doi.org/10.1002/pi.3000

    Article  CAS  Google Scholar 

  55. Zhang Y, Li T, Xie Z, Han J, Xu J, Guo B (2017) Synthesis and properties of biobased multiblock polyesters containing poly(2,5-furandimethylene succinate) and poly(butylene succinate) blocks. Ind Eng Chem Res 56:3937–3946. https://doi.org/10.1021/acs.iecr.7b00516

    Article  CAS  Google Scholar 

  56. Zhu QY, He YS, Zeng JB, Huang Q, Wang YZ (2011) Synthesis and characterization of a novel multiblock copolyester containing poly(ethylene succinate) and poly(butylene succinate). Mater Chem Phys 130:943–949. https://doi.org/10.1016/j.matchemphys.2011.08.012

    Article  CAS  Google Scholar 

  57. Xu Y, Xu J, Liu D, Guo B, Xie X (2008) Synthesis and characterization of biodegradable poly(butylene succinate-co-propylene succinate)s. J Appl Polym Sci 109:1881–1889. https://doi.org/10.1002/app.24544

    Article  CAS  Google Scholar 

  58. Papageorgiou GZ, Bikiaris DN (2007) Synthesis, cocrystallization, and enzymatic degradation of novel poly(butylene-co-propylene succinate) copolymers. Biomacromolecules 8:2437–2449. https://doi.org/10.1021/bm0703113

    Article  CAS  PubMed  Google Scholar 

  59. Chen CH, Peng JS, Chen M, Lu HY, Tsai CJ, Sen Yang C (2010) Synthesis and characterization of poly(butylene succinate) and its copolyesters containing minor amounts of propylene succinate. Colloid Polym Sci 288:731–738. https://doi.org/10.1007/s00396-010-2187-9

    Article  CAS  Google Scholar 

  60. Nikolic MS, Poleti D, Djonlagic J (2003) Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene fumarate)s. Eur Polym J 39:2183–2192. https://doi.org/10.1016/S0014-3057(03)00139-3

    Article  CAS  Google Scholar 

  61. Tan L, Chen Y, Zhou W, Nie H, Li F, He X (2010) Novel poly(butylene succinate-co-lactic acid) copolyesters: synthesis, crystallization, and enzymatic degradation. Polym Degrad Stab 95:1920–1927. https://doi.org/10.1016/j.polymdegradstab.2010.04.010

    Article  CAS  Google Scholar 

  62. Ye S, Tan L, Zhang L, Chen Y, Wei J, Zhou W (2012) Synthesis and characterization of biodegradable poly(butylene succinate)-co-oligo(L -valine) copolyesters via direct melt transesterification. J Appl Polym Sci 125:3092–3099. https://doi.org/10.1002/app.36364

    Article  CAS  Google Scholar 

  63. Oishi A, Nakano H, Ichi Fujita K, Yuasa M, Taguchi Y (2002) Copolymerization of poly(butylene succinate) with 3-alkoxy-1,2-propanediols. Polym J 34:742–747. https://doi.org/10.1295/polymj.34.742

    Article  CAS  Google Scholar 

  64. Zhang S, Yang J, Liu X, Chang J, Cao A (2003) Synthesis and characterization of poly(butylene succinate-co-butylene malate): a new biodegradable copolyester bearing hydroxyl pendant groups. Biomacromolecules 4:437–445. https://doi.org/10.1021/bm0201183

    Article  CAS  PubMed  Google Scholar 

  65. Wu L, Mincheva R, Xu Y, Raquez JM, Dubois P (2012) High molecular weight poly(butylene succinate-co-butylene furandicarboxylate) copolyesters: from catalyzed polycondensation reaction to thermomechanical properties. Biomacromolecules 13:2973–2981. https://doi.org/10.1021/bm301044f

    Article  CAS  PubMed  Google Scholar 

  66. Peng S, Bu Z, Wu L, Li BG, Dubois P (2017) High molecular weight poly(butylene succinate-co-furandicarboxylate) with 10 mol% of BF unit: synthesis, crystallization-melting behavior and mechanical properties. Eur Polym J 96:248–255. https://doi.org/10.1016/j.eurpolymj.2017.09.008

    Article  CAS  Google Scholar 

  67. Wang G, Gao B, Ye H, Xu J, Guo B (2010) Synthesis and characterizations of branched poly(butylene succinate) copolymers with 1,2-octanediol segments. J Appl Polym Sci 117:2538–2544. https://doi.org/10.1002/app.32168

    Article  CAS  Google Scholar 

  68. Wang G, Qiu Z (2012) Synthesis, crystallization kinetics, and morphology of novel biodegradable poly(butylene succinate-co-hexamethylene succinate) copolyesters. Ind Eng Chem Res 51:16369–16376. https://doi.org/10.1021/ie302817k

    Article  CAS  Google Scholar 

  69. Mincheva R, Delangre A, Raquez JM, Narayan R, Dubois P (2013) Biobased polyesters with composition-dependent thermomechanical properties: synthesis and characterization of poly(butylene succinate-co-butylene azelate). Biomacromolecules 14:890–899. https://doi.org/10.1021/bm301965h

    Article  CAS  PubMed  Google Scholar 

  70. Zeng JB, Huang CL, Jiao L, Lu X, Wang YZ, Wang XL (2012) Synthesis and properties of biodegradable poly(butylene succinate-co-diethylene glycol succinate) copolymers. Ind Eng Chem Res 51:12258–12265. https://doi.org/10.1021/ie300133a

    Article  CAS  Google Scholar 

  71. Zhao C, He X, Zou G, Li J, Li J (2016) Biodegradable poly(butylene succinate-co-butylene dimerized fatty acid)s: synthesis, crystallization, mechanical properties, and rheology. Polym Sci Ser B 58:183–193. https://doi.org/10.1134/S1560090416020111

    Article  CAS  Google Scholar 

  72. Tachibana Y, Yamahata M, Kimura S, Kasuya KI (2018) Synthesis, physical properties, and biodegradability of biobased poly(butylene succinate- co-butylene oxabicyclate). ACS Sustain Chem Eng 6:10806–10814. https://doi.org/10.1021/acssuschemeng.8b02112

    Article  CAS  Google Scholar 

  73. Han J, Shi J, Xie Z, Xu J, Guo B (2019) Synthesis, properties of biodegradable poly(butylene succinate-co-butylene 2-methylsuccinate) and application for sustainable release. Materials (Basel) 12:1507. https://doi.org/10.3390/ma12091507

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Totaro G, Cruciani L, Vannini M, Mazzola G, Di Gioia D, Celli A, Sisti L (2014) Synthesis of castor oil-derived polyesters with antimicrobial activity. Eur Polym J 56:174–184. https://doi.org/10.1016/j.eurpolymj.2014.04.018

    Article  CAS  Google Scholar 

  75. Chen CH, Yang CS, Chen M, Shih YC, Hsu HS, Lu SF (2011) Synthesis and characterization of novel poly(butylene succinate-co-2-methyl-1,3-propylene succinate)s. Express Polym Lett 5:284–294. https://doi.org/10.3144/expresspolymlett.2011.29

    Article  CAS  Google Scholar 

  76. Zhang Y, Yuan W, Liu Y (2018) Synthesis and characterization of bio-based poly(butylene succinate-co-10-hydroxydecanoate). J Elastom Plast 50:325–338. https://doi.org/10.1177/0095244317723181

    Article  CAS  Google Scholar 

  77. Chaiwutthinan P, Pimpan V, Chuayjuljit S, Leejarkpai T (2015) Biodegradable plastics prepared from poly(lactic acid), poly(butylene succinate) and microcrystalline cellulose extracted from waste-cotton fabric with a chain extender. J Polym Environ 23:114–125. https://doi.org/10.1007/s10924-014-0689-0

    Article  CAS  Google Scholar 

  78. Su S, Kopitzky R, Tolga S, Kabasci S (2019) Polylactide (PLA) and its blends with poly(butylene succinate) (PBS): a brief review. Polymers (Basel) 11:1–21. https://doi.org/10.3390/polym11071193

    Article  CAS  Google Scholar 

  79. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864. https://doi.org/10.1002/mabi.200400043

    Article  CAS  PubMed  Google Scholar 

  80. Motloung MP, Zungu S, Ojijo V, Bandyopadhyay J, Ray SS (2020) Morphological, thermal, and thermomechanical properties of cellulose nanocrystals reinforced polylactide/poly [(butylene succinate)-co-adipate] blend composite foams. Funct Compos Mater 1:1–10. https://doi.org/10.1186/s42252-020-00011-z

    Article  Google Scholar 

  81. Van De Velde K, Kiekens P (2002) Biopolymers: overview of several properties and consequences on their applications. Polym Test 21:433–442. https://doi.org/10.1016/S0142-9418(01)00107-6

    Article  Google Scholar 

  82. Sinha Ray S (2012) Polylactide-based bionanocomposites: a promising class of hybrid materials. Acc Chem Res 45:1710–1720. https://doi.org/10.1021/ar3000376

    Article  CAS  PubMed  Google Scholar 

  83. Zhang X, Liu Q, Shi J, Ye H, Zhou Q (2018) Distinctive Tensile properties of the blends of poly(l-lactic acid) (PLLA) and poly(butylene succinate) (PBS). J Polym Environ 26:1737–1744. https://doi.org/10.1007/s10924-017-1064-8

    Article  CAS  Google Scholar 

  84. Park JW, Im SS (2002) Phase behavior and morphology in blends of poly(L-lactic acid) and poly(butylene succinate). J Appl Polym Sci 86:647–655. https://doi.org/10.1002/app.10923

    Article  CAS  Google Scholar 

  85. Yokohara T, Yamaguchi M (2008) Structure and properties for biomass-based polyester blends of PLA and PBS. Eur Polym J 44:677–685. https://doi.org/10.1016/j.eurpolymj.2008.01.008

    Article  CAS  Google Scholar 

  86. Ma P, Hristova-Bogaerds DG, Lemstra PJ, Zhang Y, Wang S (2012) Toughening of PHBV/PBS and PHB/PBS blends via in situ compatibilization using dicumyl peroxide as a free-radical grafting initiator. Macromol Mater Eng 297:402–410. https://doi.org/10.1002/mame.201100224

    Article  CAS  Google Scholar 

  87. Zhang B, Sun B, Bian X, Li G, Chen X (2017) High melt strength and high toughness PLLA/PBS blends by copolymerization and in situ reactive compatibilization. Ind Eng Chem Res 56:52–62. https://doi.org/10.1021/acs.iecr.6b03151

    Article  CAS  Google Scholar 

  88. Homklin R, Hongsriphan N (2013) Mechanical and thermal properties of PLA/PBS cocontinuous blends adding nucleating agent. Energy Procedia 34:871–879. https://doi.org/10.1016/j.egypro.2013.06.824

    Article  CAS  Google Scholar 

  89. Somsunan R, Noppakoon S, Punyodom W (2019) Effect of G40 plasticizer on the properties of ternary blends of biodegradable PLA/PBS/G40. J Polym Res 26:1–11. https://doi.org/10.1007/s10965-019-1748-y

    Article  CAS  Google Scholar 

  90. Zhang HL, Sun XH, Chen QY, Ren MQ, Zhang ZH, Zhang HF, Mo ZS (2007) Miscibility, crystallization and mechanical properties of PPC/PBS blends. Chin J Polym Sci 25:589–597. https://doi.org/10.1142/S0256767907002503

    Article  Google Scholar 

  91. Li YD, Zheng JB, Wang XL, Yang KK, Wang YZ (2008) Structure and properties of soy protein/poly(butylene succinate) blends with improved compatibility. Biomacromolecules 9:3157–3164. https://doi.org/10.1021/bm800745p

    Article  CAS  PubMed  Google Scholar 

  92. Wang W, Zhang G, Zhang W, Guo W, Wang J (2013) Processing and thermal behaviors of poly (Butylene succinate) blends with highly-filled starch and glycerol. J Polym Environ 21:43–53. https://doi.org/10.1007/s10924-012-0505-7

    Article  CAS  Google Scholar 

  93. He YS, Zeng JB, Li SL, Wang YZ (2012) Crystallization behavior of partially miscible biodegradable poly(butylene succinate)/poly(ethylene succinate) blends. Thermochim Acta 529:80–86. https://doi.org/10.1016/j.tca.2011.11.031

    Article  CAS  Google Scholar 

  94. Kim HS, Kim HJ (2013) Miscibility and performance evaluation of natural-flour-filled PP/PBS and PP/PLA bio-composites. Fibers Polym 14:793–803. https://doi.org/10.1007/s12221-013-0793-0

    Article  CAS  Google Scholar 

  95. Shi K, Liu Y, Hu X, Su T, Li P, Wang Z (2018) Preparation, characterization, and biodegradation of poly(butylene succinate)/cellulose triacetate blends. Int J Biol Macromol 114:373–380. https://doi.org/10.1016/j.ijbiomac.2018.03.151

    Article  CAS  PubMed  Google Scholar 

  96. Liu D, Qi Z, Zhang Y, Xu J, Guo B (2015) Poly(butylene succinate) (PBS)/ionic liquid plasticized starch blends: preparation, characterization, and properties. Starch Staerke 67:802–809. https://doi.org/10.1002/star.201500060

    Article  CAS  Google Scholar 

  97. Li J, Luo X, Lin X, Zhou Y (2013) Comparative study on the blends of PBS/thermoplastic starch prepared from waxy and normal corn starches. Starch Staerke 65:831–839. https://doi.org/10.1002/star.201200260

    Article  CAS  Google Scholar 

  98. Ayu RS, Khalina A, Harmaen AS, Zaman K, Jawaid M, Lee CH (2018) Effect of modified tapioca starch on mechanical, thermal, and morphological properties of PBS blends for food packaging. Polymers (Basel) 10:1187. https://doi.org/10.3390/polym10111187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Fan RR, Zhou LX, Li DX, Zhang DM, Wu M, Guo G (2014) Preparation and characterization of composites based on poly (butylene succinate) and poly (lactic acid) grafted tetracalcium phosphate. J Macromol Sci Part B Phys 53:296–308. https://doi.org/10.1080/00222348.2013.810104

    Article  CAS  Google Scholar 

  100. Ngamviriyavong P, Patntirapong S, Janvikul W, Arphavasin S, Meesap P, Singhatanadgit W (2014) Development of poly(butylene succinate)/calcium phosphate composites for bone engineering. Compos Interfaces 21:431–441. https://doi.org/10.1080/15685543.2014.872959

    Article  CAS  Google Scholar 

  101. Wang Y, Zhang S, Wu X, Lu C, Cai Y, Ma L, Shi G, Yang L (2017) Effect of montmorillonite on the flame-resistant and mechanical properties of intumescent flame-retardant poly(butylene succinate) composites. J Therm Anal Calorim 128:1417–1427. https://doi.org/10.1007/s10973-017-6092-z

    Article  CAS  Google Scholar 

  102. Domínguez-Robles J, Larrañeta E, Fong ML, Martin NK, Irwin NJ, Mutjé P, Tarrés Q, Delgado-Aguilar M (2020) Lignin/poly(butylene succinate) composites with antioxidant and antibacterial properties for potential biomedical applications. Int J Biol Macromol 145:92–99. https://doi.org/10.1016/j.ijbiomac.2019.12.146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Liminana P, Quiles-Carrillo L, Boronat T, Balart R, Montanes N (2018) The effect of varying almond shell flour (ASF) loading in composites with poly(butylene succinate (PBS) matrix compatibilized with maleinized linseed oil (MLO). Materials (Basel) 11:2179. https://doi.org/10.3390/ma11112179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Liminana P, Garcia-Sanoguera D, Quiles-Carrillo L, Balart R, Montanes N (2018) Development and characterization of environmentally friendly composites from poly(butylene succinate) (PBS) and almond shell flour with different compatibilizers. Compos Part B Eng 144:153–162. https://doi.org/10.1016/j.compositesb.2018.02.031

    Article  CAS  Google Scholar 

  105. Anstey A, Muniyasamy S, Reddy MM, Misra M, Mohanty A (2014) Processability and biodegradability evaluation of composites from poly(butylene succinate) (PBS) bioplastic and biofuel co-products from Ontario. J Polym Environ 22:209. https://doi.org/10.1007/s10924-013-0633-8

    Article  CAS  Google Scholar 

  106. Arabeche K, Abdelmalek F, Delbreilh L, Zair L, Berrayah A (2020) Physical and rheological properties of biodegradable poly(butylene succinate)/alfa fiber composites. J Thermoplast Compos Mater. https://doi.org/10.1177/0892705720904098

    Article  Google Scholar 

  107. Bao L, Chen Y, Zhou W, Wu Y, Huang Y (2011) Bamboo fibers @ poly(ethylene glycol)-reinforced poly(butylene succinate) biocomposites. J Appl Polym Sci 122:2456–2466. https://doi.org/10.1002/app.34365

    Article  CAS  Google Scholar 

  108. Petchwattana N, Sanetuntikul J, Sriromreun P, Narupai B (2017) Wood plastic composites prepared from biodegradable poly(butylene succinate) and Burma Padauk sawdust (Pterocarpus macrocarpus): water absorption kinetics and sunlight exposure investigations. J Bionic Eng 14:781. https://doi.org/10.1016/S1672-6529(16)60443-2

    Article  Google Scholar 

  109. Huang A, Peng X, Geng L, Zhang L, Huang K, Chen B, Gu Z, Kuang T (2018) Electrospun poly (butylene succinate)/cellulose nanocrystals bio-nanocomposite scaffolds for tissue engineering: preparation, characterization and in vitro evaluation. Polym Test 71:101–109. https://doi.org/10.1016/j.polymertesting.2018.08.027

    Article  CAS  Google Scholar 

  110. Terzopoulou ZN, Papageorgiou GZ, Papadopoulou E, Athanassiadou E, Reinders M, Bikiaris DN (2016) Development and study of fully biodegradable composite materials based on poly(butylene succinate) and hemp fibers or hemp shives. Polym Compos 37:407–421. https://doi.org/10.1002/pc.23194

    Article  CAS  Google Scholar 

  111. Thirmizir MZA, Ishak ZAM, Taib RM, Rahim S, Jani SM (2011) Natural weathering of Kenaf Bast fibre-filled poly(butylene succinate) composites: effect of fibre loading and compatibiliser addition. J Polym Environ 19:263–273. https://doi.org/10.1007/s10924-010-0272-2

    Article  CAS  Google Scholar 

  112. Lee JM, Mohd Ishak ZA, Mat Taib R, Law TT, Ahmad Thirmizir MZ (2013) Mechanical, thermal and water absorption properties of kenaf-fiber-based polypropylene and poly(butylene succinate) composites. J Polym Environ 21:293–302. https://doi.org/10.1007/s10924-012-0516-4

    Article  CAS  Google Scholar 

  113. Ju J, Gu Z, Liu X, Zhang S, Peng X, Kuang T (2020) Fabrication of bimodal open-porous poly (butylene succinate)/cellulose nanocrystals composite scaffolds for tissue engineering application. Int J Biol Macromol 147:1164–1173. https://doi.org/10.1016/j.ijbiomac.2019.10.085

    Article  CAS  PubMed  Google Scholar 

  114. Frollini E, Bartolucci N, Sisti L, Celli A (2013) Poly(butylene succinate) reinforced with different lignocellulosic fibers. Ind Crops Prod 45:160–169. https://doi.org/10.1016/j.indcrop.2012.12.013

    Article  CAS  Google Scholar 

  115. Lee SM, Cho D, Park WH, Lee SG, Han SO, Drzal LT (2005) Novel silk/poly(butylene succinate) biocomposites: the effect of short fibre content on their mechanical and thermal properties. Compos Sci Technol 65:647. https://doi.org/10.1016/j.compscitech.2004.09.023

    Article  CAS  Google Scholar 

  116. Kurokawa N, Kimura S, Hotta A (2018) Mechanical properties of poly(butylene succinate) composites with aligned cellulose-acetate nanofibers. J Appl Polym Sci 135:45429. https://doi.org/10.1002/app.45429

    Article  CAS  Google Scholar 

  117. Zhang S, He Y, Yin Y, Jiang G (2019) Fabrication of innovative thermoplastic starch bio-elastomer to achieve high toughness poly(butylene succinate) composites. Carbohydr Polym 206:827–836. https://doi.org/10.1016/j.carbpol.2018.11.036

    Article  CAS  PubMed  Google Scholar 

  118. Liang Z, Pan P, Zhu B, Dong T, Inoue Y (2010) Mechanical and thermal properties of poly(butylene succinate)/plant fiber biodegradable composite. J Appl Polym Sci 115:3559. https://doi.org/10.1002/app.29848

    Article  CAS  Google Scholar 

  119. Nam TH, Ogihara S, Tung NH, Kobayashi S (2011) Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly(butylene succinate) biodegradable composites. Compos Part B Eng 42:1648. https://doi.org/10.1016/j.compositesb.2011.04.001

    Article  CAS  Google Scholar 

  120. Wu CS, Liao HT, Jhang JJ (2013) Palm fibre-reinforced hybrid composites of poly(butylene succinate): characterisation and assessment of mechanical and thermal properties. Polym Bull 70:3443. https://doi.org/10.1007/s00289-013-1032-y

    Article  CAS  Google Scholar 

  121. Han H, Wang X, Wu D (2013) Mechanical properties, morphology and crystallization kinetic studies of bio-based thermoplastic composites of poly(butylene succinate) with recycled carbon fiber. J Chem Technol Biotechnol 88:1200. https://doi.org/10.1002/jctb.3956

    Article  CAS  Google Scholar 

  122. Zhang Y, Yu C, Chu PK, Lv F, Zhang C, Ji J, Zhang R, Wang H (2012) Mechanical and thermal properties of basalt fiber reinforced poly(butylene succinate) composites. Mater Chem Phys 133:845–849. https://doi.org/10.1016/j.matchemphys.2012.01.105

    Article  CAS  Google Scholar 

  123. Gowman A, Wang T, Rodriguez-Uribe A, Mohanty AK, Misra M (2018) Bio-poly(butylene succinate) and its composites with grape pomace: mechanical performance and thermal properties. ACS Omega 3:15205. https://doi.org/10.1021/acsomega.8b01675

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Luo X, Li J, Feng J, Yang T, Lin X (2014) Mechanical and thermal performance of distillers grains filled poly(butylene succinate) composites. Mater Des 57:195. https://doi.org/10.1016/j.matdes.2013.12.056

    Article  CAS  Google Scholar 

  125. Platnieks O, Barkane A, Ijudina N, Gaidukova G, Thakur VK, Gaidukovs S (2020) Sustainable tetra pak recycled cellulose/poly(Butylene succinate) based woody-like composites for a circular economy. J Clean Prod 270:122321. https://doi.org/10.1016/j.jclepro.2020.122321

    Article  CAS  Google Scholar 

  126. Chen GX, Yoon JS (2005) Thermal stability of poly(l-lactide)/poly(butylene succinate)/clay nanocomposites. Polym Degrad Stab 88:206. https://doi.org/10.1016/j.polymdegradstab.2004.06.005

    Article  CAS  Google Scholar 

  127. Chuayjuljit S, Wongwaiwattanakul C, Chaiwutthinan P, Prasassarakich P (2017) Biodegradable poly(lactic acid)/poly(butylene succinate)/wood flour composites: physical and morphological properties. Polym Compos 38:2841. https://doi.org/10.1002/pc.23886

    Article  CAS  Google Scholar 

  128. Xu J, Guo BH (2010) Poly(butylene succinate) and its copolymers: Research, development and industrialization. Biotechnol J 5:1149–1163. https://doi.org/10.1002/biot.201000136

    Article  CAS  PubMed  Google Scholar 

  129. Bahari K, Mitomo H, Enjoji T, Yoshii F, Makuuchi K (1998) Radiation crosslinked poly(butylene succinate) foam and its biodegradation. Polym Degrad Stab 62:551–557. https://doi.org/10.1016/S0141-3910(98)00041-X

    Article  CAS  Google Scholar 

  130. Picard MC, Rodriguez-Uribe A, Thimmanagari M, Misra M, Mohanty AK (2020) Sustainable biocomposites from poly(butylene succinate) and apple pomace: a study on compatibilization performance. Waste Biomass Valoriz 11:3775–3787. https://doi.org/10.1007/s12649-019-00591-3

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aarti More.

Ethics declarations

Conflict of interest

There is no conflict of interest by any of the author to this review.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajgond, V., Mohite, A., More, N. et al. Biodegradable polyester-polybutylene succinate (PBS): a review. Polym. Bull. 81, 5703–5752 (2024). https://doi.org/10.1007/s00289-023-04998-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04998-w

Keywords

Navigation