Skip to main content
Log in

Hydrogen bonding network formation in epoxidized natural rubber

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Reversible networks of epoxidized natural rubber (ENR) mixed with dicarboxylic acid were studied. ENR is a bio-based polymer, commercially available, and capable of sulphur vulcanisation. In addition, ENR has been already reported to exhibit self-healing characteristics after ionisation by adding ionic groups to the epoxide group. The reversible network structure plays an essential role for self-healing behaviour, which cannot be obtained for elastomers with irreversible sulphur network. In this study, dicarboxylic acid was used to construct the reversible network. The reversible hydrogen bonds were established in such a way that firstly one carboxyl group of di-carboxylic acid (DA) is reacted to ENR and secondary the other carboxyl group of DA interacts with residual carboxyl group to form hydrogen bonds in carboxylic dimer. The self-healing behaviour was evaluated for ENR with DA by tensile tests. This self-healing system provides new insights for sustainable and natural-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wright KRS, Botha TR, Els PS (2019) Effects of age and wear on the stiffness and friction properties of an SUV tyre. J Terramech 84:21–30

    Article  Google Scholar 

  2. Euchler E, Heinrich G, Tada T, Ishikawa M (2018) The effect of boundary conditions on the failure behavior of rubber vulcanizates under tensile deformation. Kautschuk-Gummi-Kunststoff 9:32–38

    Google Scholar 

  3. Euchler E, Bernhardt R, Schneider K, Heinrich G, Wießner S, Tada T (2020) In situ dilatometry and X-ray microtomography study on the formation and growth of cavities in unfilled styrene-butadiene-rubber vulcanizates subjected to constrained tensile deformation. Polymer 187:122086

    Article  CAS  Google Scholar 

  4. Euchler E, Bernhardt R, Schneider K, Heinrich G, Tada T, Wießner S, Stommel M (2020) Cavitation in rubber vukcanizates subjected to constrained tensile deformation. In: Heinrich G, Stocek R, Kipscholl R (eds) Advances in polymer science 286 (fatigue crack growth) in rubber materials. Springer, Berlin, pp 203–224

    Chapter  Google Scholar 

  5. Euchler E, Bernhardt R, Wilde F, Schneider K, Heinrich G, Tada T, Wießner S, Stommel M (2021) First-time investigations on cavitation in rubber parts subjected to constrained tension using in situ synchrotron X-ray microtomography (SRμCT). Adv Eng Mater 23(11):2001347

    Article  Google Scholar 

  6. Euchler E, Bernhardt R, Schneider K, Tada T, Wießner S (2021) Experimental study on cavitation in rubber vulcanizates subjected to constrained tensile deformation. Proc Appl Math Mech 21(1):e202100023

    Article  Google Scholar 

  7. Blaiszik BJ, Kramer SLB, Olugebefola SC, Moore JS, Sottos NR, White SR (2010) Self-healing polymers and composites. Ann Rev Mater Res 40:179–211

    Article  CAS  Google Scholar 

  8. Murphy EB, Bolanos E, Schaffner-Hamann C, Wudl F, Nutt SR, Auad ML (2008) Synthesis and characterization of a single-component thermally remendable polymer network: staudinger and stille revisited. Macromolecules 41:5203–5209

    Article  CAS  Google Scholar 

  9. Deng G, Tang C, Li F, Jiang H, Chen Y (2010) Covalent cross-linked polymer gels with reversible sol−gel transition and self-healing properties. Macromolecules 43:1191–1194

    Article  CAS  Google Scholar 

  10. Fu F, Huang M, Zhang W, Zhao Y, Liu X (2018) Thermally assisted self-healing behavior of anhydride modified polybenzoxazines based on transesterification. Sci Rep 8:10325

    Article  PubMed  PubMed Central  Google Scholar 

  11. Das A, Sallat A, Böhme F, Suckow M, Basu D, Wießner S, Stöckelhuber KW, Voit B, Heinrich G (2015) Interfaces ionic modification turns commercial rubber into a self-healing material. ACS Appl Mater. 7:20623–20630

    Article  CAS  Google Scholar 

  12. Le HH, Böhme F, Sallat A, Wießner S, Landwehr M, Reuter U, Stöckelhuber KW, Heinrich G, Radusch HJ, Das A (2017) Temperature scanning stress relaxation of an autonomous self-healing elastomer containing non-covalent reversible network junctions. Macromol Mater Eng 302:1600385

    Article  Google Scholar 

  13. Le HH, Hait S, Das A, Wiessner S, Stoeckelhuber K, Böhme F, Reuter U, Naskar K, Heinrich G, Radusch H (2017) Self-healing properties of carbon nanotube filled natural rubber/bromobutyl rubber blends. Express Polym Lett 11:230

    Article  CAS  Google Scholar 

  14. Sallat A, Das A, Schaber J, Scheler U, Bhagavatheswaran ES, Stöckelhuber KW, Heinrich G, Voit B, Böhme F (2018) Viscoelastic and self-healing behavior of silica filled ionically modified poly(isobutylene-co-isoprene) rubber. RSC Adv 8:26793–26803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xu C, Huang X, Li C, Chen Y, Lin B, Liang X (2016) Design of “Zn2+ Salt-Bondings” cross-linked carboxylated styrene butadiene rubber with reprocessing and recycling ability via rearrangements of ionic cross-linkings. ACS Sustain Chem Eng 4:6981–6990

    Article  CAS  Google Scholar 

  16. Wang Q, Wang W, Li Q, Wu C (2021) Mechanically robust and recyclable styrene-butadiene rubber cross-linked via Cu2+–nitrogen coordination bond after a tetrazine click reaction. Ind Eng Chem Res 60:2163–2177

    Article  CAS  Google Scholar 

  17. Sarkar S, Banerjee SL, Singha NK (2021) Self-healable hydrophobic material based on anthracenyl functionalized fluorous block copolymers via reversible addition-fragmentation chain transfer polymerization and rapid diels-alder reaction. Macromol Mater Eng 306:2000626

    Article  CAS  Google Scholar 

  18. Wang Q, Shi Y, Li Q, Wu C (2021) Toughening, recyclable and healable nitrile rubber based on multi-coordination crosslink networks after “tetrazine click” reaction. Eur Polym J 150:110415

    Article  CAS  Google Scholar 

  19. Miwa Y, Kurachi J, Sugino Y, Udagawa T, Kutsumizu S (2020) Toward strong self-healing polyisoprene elastomers with dynamic ionic crosslinks. Soft Matter 16:3384–3394

    Article  CAS  PubMed  Google Scholar 

  20. Xu C, Nie J, Wu W, Zheng Z, Chen Y (2019) Self-healable, recyclable, and strengthened epoxidized natural rubber/carboxymethyl chitosan biobased composites with hydrogen bonding supramolecular hybrid networks. ACS Sustain Chem Eng 7:15778–15789

    Article  CAS  Google Scholar 

  21. Zhang X, Tang Z, Guo B, Zhang L (2016) Enabling design of advanced elastomer with bioinspired metal-oxygen coordination. ACS Appl Mater Interfaces 8:32520–32527

    Article  CAS  PubMed  Google Scholar 

  22. Imbernon L, Oikonomou EK, Norvez S, Leiblera L (2015) Chemically crosslinked yet reprocessable epoxidized natural rubber via thermo-activated disulfide rearrangements. Polym Chem 6:4271–4278

    Article  CAS  Google Scholar 

  23. Feng Z, Hu J, Zuo H, Ning N, Zhang L, Yu B, Tian M (2018) Photothermal-induced self-healable and reconfigurable shape memory bio-based elastomer with recyclable ability. ACS Appl Mater Interfaces 11:1469–1479

    Article  PubMed  Google Scholar 

  24. Cheng B, Lu X, Zhou J, Qin R, Yang Y (2019) Dual cross-linked self-healing and recyclable epoxidized natural rubber based on multiple reversible effects. ACS Sustain Chem Eng 7:4443–4455

    Article  CAS  Google Scholar 

  25. Utrera-Barrios S, Santana MH, Verdejo R, López-Manchado MA (2020) Design of rubber composites with autonomous self-healing capability. ACS Omega 5:1902–1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cao L, Gong Z, Liu C, Fan J, Chen Y (2021) Design and fabrication of mechanically strong and self-healing rubbers via metal-ligand coordination bonds as dynamic crosslinks. Compos Sci Technol 207:108750

    Article  CAS  Google Scholar 

  27. Algaily B, Kaewsakul W, Sarkawi SS, Kalkornsurapranee E (2021) Alleviating molecular-scale damages in silica-reinforced natural rubber compounds by a self-healing modifier. Polymers 13:39

    Article  CAS  Google Scholar 

  28. Algaily B, Kaewsakul W, Sarkawi SS, Kalkornsurapranee E (2021) A self-healing system based on ester crosslinks for carbon black-filled rubber compounds. J Compos Sci 5:70

    Article  CAS  Google Scholar 

  29. Mandal S, Simon F, Banerjee SS, Tunnicliffe LB, Nakason C, Das C, Das M, Naskar K, Wiessner S, Heinrich G, Das A (2021) Controlled release of metal ion cross-linkers and development of self-healable epoxidized natural rubber. ACS Appl Polym Mater 3:1190–1202

    Article  CAS  Google Scholar 

  30. Gong Z, Huang J, Cao L, Xu C, Chen Y (2022) Self-healing epoxidized natural rubber with ionic/coordination crosslinks. Mater Chem Phys 285:126063

    Article  CAS  Google Scholar 

  31. Liu W, Huang J, Gong Z, Fan J, Chen YH (2022) Healable, recyclable and mechanically robust elastomers with multiple dynamic cross-linking bonds. Polymer 252:124900

    Article  CAS  Google Scholar 

  32. Mandal S, Hait S, Simon F, Ghosh A, Scheler U, Arief I, Tada T, Hoang YX, Wießner S, Heinrich G, Das A (2022) Transformation of epoxidized natural rubber into ionomers by grafting of 1himidazolium ion and development of a dynamic reversible network. ASC Appl Polym Mater 4:6612–6622

    Article  CAS  Google Scholar 

  33. Pire M, Norvez S, Iliopoulos I, Le Rossignol B, Leibler L (2010) Epoxidized natural rubber/dicarboxylic acid self-vulcanized blends. Polymer 51:5903–5909

    Article  CAS  Google Scholar 

  34. Pire M, Norvez S, Iliopoulos I, Le Rossignol B, Leibler L (2014) Dicarboxylic acids may compete with standard vulcanisation processes for crosslinking epoxidised natural rubber. Compos Interfaces 21:45–50

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Sawada.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest associated with this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawada, J., Mandal, S., Das, A. et al. Hydrogen bonding network formation in epoxidized natural rubber. Polym. Bull. 81, 5991–6002 (2024). https://doi.org/10.1007/s00289-023-04968-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04968-2

Keywords

Navigation