Skip to main content

Advertisement

Log in

The state of the art in core–shell-type lipid–polymer hybrid nanocarriers and beyond

  • REVIEW PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The emergence of drug delivery systems stems from the need to enhance the therapeutic effectiveness of drugs while minimizing their side effects. With the advent of nanotechnology, a wide range of molecular structures, including carbon nanotubes and polymeric materials, have been developed, leading to significant advancements in the field. However, despite these promising outcomes, it is imperative to note that drug delivery systems do not provide a universal solution to all challenges in pharmaceutical technology; as each system possesses certain advantages and limitations. As a result, researchers turned their attention to the creation of new hybrid structures by combining different materials. Among these, lipid–polymer hybrid particles gained considerable attention in the academic community; these  particles exhibit a core–shell structure, wherein a polymer core is enveloped by a layer of phospholipids. This manuscript serves as an overview of the fundamental aspects of these molecular architectures, starting with a comprehensive description of lipid–polymer hybrid particles. Subsequently, both conventional and unconventional production methods for fabricating these structures are discussed. The characterization of the physical properties of these particles and their influence on pharmaceutical activity are explored in a subsequent section. Finally, notable examples from the literature are presented.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mandal B, Bhattacharjee H, Mittal N et al (2013) Core–shell-type lipid–polymer hybrid nanoparticles as a drug delivery platform. Nanomed-Nanotechnol 9(4):474–491

    CAS  Google Scholar 

  2. Sengel-Turk CT, Gumustas M, Uslu B,(2018) et al. A novel approach for drug targeting: core-shell type lipid-polymer hybrid nanocarriers. In Design of Nanostructures for Theranostics Applications 2018; 69–107. William Andrew Publishing

  3. Lian T, Ho RJ (2001) Trends and developments in liposome drug delivery systems. J Pharm Sci 90(6):667–680

    CAS  PubMed  Google Scholar 

  4. Liu P, Chen G, Zhang J (2022) A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules 27(4):1372

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Pentak D, Ploch-Jankowska A, Zięba A et al (2022) The advances and challenges of liposome-assisted drug release in the presence of serum albumin molecules: the influence of surrounding pH. Materials 15(4):1586

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Begines B, Ortiz T, Pérez-Aranda M et al (2020) Polymeric nanoparticles for drug delivery: recent developments and future prospects. Nanomaterials 10(7):1403

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Li D, Zhang X, Chen X et al (2022) Research progress and prospects for polymeric nanovesicles in anticancer drug delivery. Front Bioeng Biotechnol 10:850366

    PubMed  PubMed Central  Google Scholar 

  8. Herdiana Y, Wathoni N, Shamsuddin S et al (2022) Scale-up polymeric-based nanoparticles drug delivery systems: development and challenges. OpenNano 7:100048

    Google Scholar 

  9. Troutier AL, Delair T, Pichot C et al (2005) Physicochemical and interfacial investigation of lipid/polymer particle assemblies. Langmuir 21(4):1305–1313

    CAS  PubMed  Google Scholar 

  10. Thevenot J, Troutier AL, David L et al (2007) Steric stabilization of lipid/polymer particle assemblies by poly (ethylene glycol)-lipids. Biomacromol 8(11):3651–3660

    CAS  Google Scholar 

  11. Beija M, Salvayre R, Lauth-de Viguerie N et al (2012) Colloidal systems for drug delivery: from design to therapy. Trends Biotech 30(9):485–496

    CAS  Google Scholar 

  12. Hatziantonioy S, Demetzos C (2008) Lipids of membranes: chemistry, biological role and applications as drug carriers. Studies Nat Prod Chem 34:173–202

    CAS  Google Scholar 

  13. Thevenot J, Troutier AL, Putaux JL et al (2008) Effect of the polymer nature on the structural organization of lipid/polymer particle assemblies. J Phys Chem B 112(44):13812–13822

    CAS  PubMed  Google Scholar 

  14. Troutier AL, Véron L, Delair T et al (2005) New insights into self-organization of a model lipid mixture and quantification of its adsorption on spherical polymer particles. Langmuir 21(22):9901–9910

    CAS  PubMed  Google Scholar 

  15. Wong HL, Rauth AM, Bendayan R et al (2006) A new polymer–lipid hybrid nanoparticle system increases cytotoxicity of doxorubicin against multidrug-resistant human breast cancer cells. Pharm Res 23(7):1574–1585

    CAS  PubMed  Google Scholar 

  16. Wong HL, Bendayan R, Rauth AM et al (2006) Simultaneous delivery of doxorubicin and GG918 (Elacridar) by new polymer-lipid hybrid nanoparticles (PLN) for enhanced treatment of multidrug-resistant breast cancer. J Control Release 116(3):275–284

    CAS  PubMed  Google Scholar 

  17. Troutier-Thuilliez AL, Thevenot J, Delair T et al (2009) Adsorption of plasmid DNA onto lipid/polymer particle assemblies. Soft Matter 5(23):4739–4747

    CAS  Google Scholar 

  18. Li Y, Wong HL, Shuhendler AJ et al (2008) Molecular interactions, internal structure and drug release kinetics of rationally developed polymer–lipid hybrid nanoparticles. J Control Release 128(1):60–70

    CAS  PubMed  Google Scholar 

  19. Troutier AL, Ladavière C (2007) An overview of lipid membrane supported by colloidal particles. Adv Coll Int Sci 133(1):1–21

    CAS  Google Scholar 

  20. Li Y, Taulier N, Rauth AM et al (2006) Screening of lipid carriers and characterization of drug-polymer-lipid interactions for the rational design of polymer-lipid hybrid nanoparticles (PLN). Pharm Res 23(8):1877–1887

    CAS  PubMed  Google Scholar 

  21. Aryal S, Hu CMJ, Zhang L (2011) Polymeric nanoparticles with precise ratiometric control over drug loading for combination therapy. Mol Pharm 8(4):1401–1407

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang AZ, Yuet K, Zhang L et al (2010) ChemoRad nanoparticles: a novel multifunctional nanoparticle platform for targeted delivery of concurrent chemoradiation. Nanomedicine 5(3):361–368

    CAS  PubMed  Google Scholar 

  23. Salvador-Morales C, Zhang L, Langer R et al (2009) Immunocompatibility properties of lipid–polymer hybrid nanoparticles with heterogeneous surface functional groups. Biomaterials 30(12):2231–2240

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Cheow WS, Hadinoto K (2011) Factors affecting drug encapsulation and stability of lipid–polymer hybrid nanoparticles. Coll Surf B Biointer 85(2):214–220

    CAS  Google Scholar 

  25. Nobs L, Buchegger F, Gurny R et al (2004) Current methods for attaching targeting ligands to liposomes and nanoparticles. J Pharm Sci 93(8):1980–1992

    CAS  PubMed  Google Scholar 

  26. Liu Y, Li K, Pan J et al (2010) Folic acid conjugated nanoparticles of mixed lipid monolayer shell and biodegradable polymer core for targeted delivery of Docetaxel. Biomaterials 31(2):330–338

    CAS  PubMed  Google Scholar 

  27. Zhao P, Wang H, Yu M et al (2012) Paclitaxel loaded folic acid targeted nanoparticles of mixed lipid-shell and polymer-core: in vitro and in vivo evaluation. Eur J Pharm Biopharm 81(2):248–256

    CAS  PubMed  Google Scholar 

  28. Zheng Y, Yu B, Weecharangsan W et al (2010) Transferrin-conjugated lipid-coated PLGA nanoparticles for targeted delivery of aromatase inhibitor 7α-APTADD to breast cancer cells. Int J Pharm 390(2):234–241

    CAS  PubMed  Google Scholar 

  29. Hu CMJ, Kaushal S, Cao HST et al (2010) Half-antibody functionalized lipid− polymer hybrid nanoparticles for targeted drug delivery to carcinoembryonic antigen presenting pancreatic cancer cells. Mol Pharm 7(3):914–920

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Messerschmidt SK, Musyanovych A, Altvater M et al (2009) Targeted lipid-coated nanoparticles: delivery of tumor necrosis factor-functionalized particles to tumor cells. J Control Release 137(1):69–77

    CAS  PubMed  Google Scholar 

  31. Akbarzadeh A, Rezaei-Sadabady R, Davaran S et al (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8(1):1–9

    Google Scholar 

  32. Zhang L, Zhu D, Dong X et al (2015) Discovery and in vivo evaluation of novel rgd-modified lipid-polymer hybrid nanoparticles for targeted drug delivery. Int J Nanomed 10:2101–2114

    Google Scholar 

  33. Seedat N, Kalhapure RS, Mocktar C et al (2016) Co-encapsulation of multi-lipids and polymers enhances the performance of vancomycin in lipid-polymer hybrid nanoparticles: in vitro and in silico studies. Mat Sci Eng C 61:616–630

    CAS  Google Scholar 

  34. Mieszawska AJ, Gianella A, Cormode DP et al (2012) Engineering of lipid-coated PLGA nanoparticles with a tunable payload of diagnostically active nanocrystals for medical imaging. Chem Comm 48:5835–5837

    CAS  PubMed  Google Scholar 

  35. Schäfer J, Sitterberg J, Ehrhardt C et al (2008) A new drug vehicle-lipid coated biodegradable nanoparticles. Adv Sci Technol 57:148–153

    Google Scholar 

  36. Clawson C, Ton L, Aryal S et al (2011) Synthesis and characterization of lipid-polymer hybrid nanoparticles with pH-triggered poly (ethylene glycol) shedding. Langmuir 27:10556–10561

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Carmona-Ribeiro AM, de Moraes LM (1999) Interactions between bilayer membranes and latex. Coll Surf A Physicochem Eng Asp 153:355–361

    CAS  Google Scholar 

  38. Hadinoto K, Sundaresan A, Cheow WS (2013) Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur J Pharm Biopharm 85:427–443

    CAS  PubMed  Google Scholar 

  39. Hitzman CJ, Elmquist WF, Wattenberg LW et al (2006) Development of a respirable, sustained release microcarrier for 5-fluorouracil I: in vitro assessment of liposomes, microspheres, and lipid coated nanoparticles. J Pharm Sci 95:1114–1126

    CAS  PubMed  Google Scholar 

  40. Li XA, Anton N, Arpagaus C et al (2010) Nanoparticles by spray drying using innovative new technology: the Buchi nano spray dryer B-90. J Control Release 147:304–310

    CAS  PubMed  Google Scholar 

  41. Hasan W, Chu K, Gullapalli A et al (2012) Delivery of multiple siRNAsusing lipid-coated PLGA nanoparticles for treatment of prostate cancer. Nano Lett 12:287–292

    CAS  PubMed  Google Scholar 

  42. Sengel-Turk CT, Alcigir ME, Ekim O et al (2020) Clinicopathological and immunohistochemical evaluation of lonidamine-entrapped lipid-polymer hybrid nanoparticles in treatment of benign prostatic hyperplasia: an experimental rat model. Eur J Pharm Biopharm 157:211–220

    CAS  PubMed  Google Scholar 

  43. Bakar-Ates F, Ozkan E, Sengel-Turk CT (2020) Encapsulation of Cucurbitacin B into lipid polymer hybrid nanocarriers induced apoptosis of MDAMB231 cells through PARP cleavage. Int J Pharm 586:119565

    CAS  PubMed  Google Scholar 

  44. Bou S, Wang X, Anton N et al (2020) Lipid-core/polymer-shell hybrid nanoparticles: synthesis and characterization by fluorescence labeling and electrophoresis. Soft Matter 16:4173–4181

    CAS  PubMed  Google Scholar 

  45. Yuan Y, Chiba P, Cai T et al (2018) Fabrication of psoralen-loaded lipid-polymer hybrid nanoparticles and their reversal effect on drug resistance of cancer cells. Oncol Rep 40:1055–1063

    CAS  PubMed  Google Scholar 

  46. Bochicchio S, Lamberti G, Barba AA (2021) Polymer-lipid pharmaceutical nanocarriers: innovations by new formulations and production technologies. Pharmaceutics 13:198

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Omar SH, Osman R, Mamdouh W et al (2020) Bioinspired lipid-polysaccharide modified hybrid nanoparticles as a brain-targeted highly loaded carrier for a hydrophilic drug. Int J Biol Macro 165:483–494

    CAS  Google Scholar 

  48. Khan S, Aamir MN, Madni A et al (2021) Lipid poly(ε-caprolactone) hybrid nanoparticles of 5-fluorouracil for sustained release and enhanced anticancer efficacy. Life Sci 284:119909

    CAS  PubMed  Google Scholar 

  49. Abdel-Bar HM, Walters AA, Wang JTW et al (2021) Combinatory delivery of etoposide and siCD47 in a lipid polymer hybrid delays lung tumor growth in an experimental melanoma lung metastatic model. Adv Healthcare Mater 10:2001853

    CAS  Google Scholar 

  50. Khater SE, El-khouly A, Abdel-Bar HM et al (2021) Fluoxetine hydrochloride loaded lipid polymer hybrid nanoparticles showed possible efficiency against SARS-CoV-2 infections. Int J Pharm 607:121023

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Tahir N, Madni A, Balasubramanian V et al (2017) Development and optimization of methotrexate-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery applications. Int J Pharm 533:156–168

    CAS  PubMed  Google Scholar 

  52. Sengel-Turk CT, Ozmen N, Bakar-Ates F (2021) Design, characterization and evaluation of cucurbitacin B-loaded core–shell-type hybrid nano-sized particles using DoE approach. Polym Bull 78:3327–3351

    CAS  Google Scholar 

  53. Sengel-Turk CT, Ozkan E, Bakar-Ates F (2022) Box-Behnken design optimization and in vitro cell based evaluation of piroxicam loaded core-shell type hybrid nanocarriers for prostate cancer. J Pharm Biomed Anal 216:114799

    CAS  PubMed  Google Scholar 

  54. Gurny R, Peppas NA, Harrington DD et al (1981) Development of biodegradable and injectable latices for controlled release of potent drugs. Drug Dev Ind Pharm 7:1–25

    CAS  Google Scholar 

  55. Ruysschaert T, Sonnen A, Haefele T et al (2005) Hybrid nanocapsules: interactions of ABA block copolymers with liposomes. J Am Chem Soc 127:6242–6247

    CAS  PubMed  Google Scholar 

  56. Chan JM, Zhang L, Yuet KP et al (2009) PLGA–lecithin–PEG core-shell nanoparticles for controlled drug delivery. Biomaterials 30(8):1627–1634

    CAS  PubMed  Google Scholar 

  57. Palange AL, Mascolo DD, Carallo C et al (2014) Lipid polymer nanoparticles encapsulating curcumin for modulating the vascular deposition of breast cancer cells. Nanomed Nanotechnol Biol Med 10:991–1002

    CAS  Google Scholar 

  58. Bershteyn A, Chaparro J, Yau R et al (2008) Polymer-supported lipid shells, onions, and flowers. Soft Matter 4:1787–1791

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Rose F, Wern JE, Ingvarsson PT et al (2015) Engineering of a novel adjuvant based on lipid-polymer hybrid nanoparticles: a quality-by-design approach. J Control Release 210:48–57

    CAS  PubMed  Google Scholar 

  60. Mukherjee A, Waters AK, Kalyan P et al (2019) Lipid-polymer hybrid nanoparticles as a next-generation drug delivery platform: state of the art, emerging technologies, and perspectives. Int J Nanomed 14:1937–1952

    CAS  Google Scholar 

  61. Shi J, Xu Y, Xu X et al (2014) Hybrid lipid polymer nanoparticles for sustained siRNA delivery and gene silencing. Nanomedicine 10:897–900

    CAS  PubMed  Google Scholar 

  62. Zhao Y, Lin D, Wu F et al (2014) Discovery and in vivo evaluation of novel RGD-modified lipid-polymer hybrid nanoparticles for targeted drug delivery. Int J Mol Sci 15:17565–17576

    PubMed  PubMed Central  Google Scholar 

  63. Bose RJC, Arai Y, Ahn JC et al (2015) Influence of cationic lipid concentration on properties of lipid-polymer hybrid nanospheres for gene delivery. Int J Nanomed 10:5367–5382

    CAS  Google Scholar 

  64. Dave V, Yadav RB, Kushwaha K et al (2017) Lipid-polymer hybrid nanoparticles: development & statistical optimization of norfloxacin for topical drug delivery system. Bioact Mater 2:269–280

    PubMed  PubMed Central  Google Scholar 

  65. Leng D, Thanki K, Fattal E et al (2018) Engineering of budesonide-loaded lipid-polymer hybrid nanoparticles using a quality-by-design approach. Int J Pharm 548:740–746

    CAS  PubMed  Google Scholar 

  66. Zhang J, Hu J, Chan HF et al (2016) iRGD decorated lipid-polymer hybrid nanoparticles for targeted co-delivery of doxorubicin and sorafenib to enhance anti-hepatocellular carcinoma efficacy. Nanomed Nanotechnol Biol Med 12:1303–1311

    CAS  Google Scholar 

  67. Yalcin TE, Ilbasmis-Tamer S, Takka S (2018) Development and characterization of gemcitabine hydrochloride loaded lipid polymer hybrid nanparticles (LPHNs) using central composite design. Int J Pharm 548:255–262

    CAS  PubMed  Google Scholar 

  68. Gajra B, Dalwadi C, Patel R (2015) Formulation and optimization of itraconazole polymeric lipid hybrid nanoparticles (Lipomer) using Box Behnken design. DARU J Pharm Sci 23:3

    Google Scholar 

  69. Sengel-Turk CT, Hascicek C (2017) Design of lipid-polymer hybrid nanoparticles for therapy of BPH: Part I. Formulation optimization using a design of experiment approach. J Drug Deliv Sci Technol 39:16–24

    CAS  Google Scholar 

  70. Lopes CE, Longoski G, Klein T et al (2017) A simple HPLC method for the determination of halcinonide in lipid nanoparticles: development, validation, encapsulation efficiency, and in vitro drug permeation. Braz J Pharm Sci 53(2):e15250

    Google Scholar 

  71. Manzanares D, Ceña V (2020) Endocytosis: the nanoparticle and submicron nanocompounds gateway into the cell. Pharmaceutics 12:371

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Danaei M, Dehghankhold M, Ataei S et al (2018) Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10(2):57

    PubMed  PubMed Central  Google Scholar 

  73. Perrault SD, Walkey C, Jennings T et al (2009) Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett 9:1909–1915

    CAS  PubMed  Google Scholar 

  74. Sengel-Turk CT, Hascicek C, Dogan AL et al (2012) Preparation and in vitro evaluation of meloxicam-loaded PLGA nanoparticles on HT-29 human colon adenocarcinoma cells. Drug Dev Ind Pharm 38(9):1107–1116

    PubMed  Google Scholar 

  75. Wu Y, Li M, Gao H (2009) Polymeric micelle composed of PLA and chitosan as a drug carrier. J Polym Res 16:11–18

    CAS  Google Scholar 

  76. Shanavas A, Sasidharan S, Bahadur D et al (2017) Magnetic core-shell hybrid nanoparticles for receptor targeted anti-cancer therapy and magnetic resonance imaging. J Coll Int Sci 486:112–120

    CAS  Google Scholar 

  77. Du JB, Song YF, Ye WL et al (2014) PEG detachable lipid-polymer hybrid nanoparticle for delivery of chemotherapy drugs to cancer cells. Anticancer Drugs 25:751–766

    CAS  PubMed  Google Scholar 

  78. Barcelo D, Ahuja S, Jespersen N. (Eds.), (2005) Comprehensive analytical chemistry. In: Modern instrumental analysis, Elsevier, New York, 47

  79. Jin Z, Lv Y, Cao H et al (2016) Core-shell nanocarriers with high paclitaxel loading for passive and active targeting. Sci Rep 6:27559

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Salahuddin N, Elbarbary AA, Alkabes HA (2017) Antibacterial and antitumor activities of 3-amino-phenyl-4(3H)-quinazolinone/polypyrrole chitosan core-shell nanoparticles. Polym Bull 74:1775–1790

    CAS  Google Scholar 

  81. Zhao X, Li F, Li Y et al (2015) Co-delivery of HIF1α siRNA and gemcitabine via biocompatible lipid-polymer hybrid nanoparticles for effective treatment of pancreatic cancer. Biomaterials 46:13–25

    CAS  PubMed  Google Scholar 

  82. Dong S, Zhou X, Yang J (2016) TAT modified and lipid-PEI hybrid nanoparticles for co-delivery of docetaxel and pDNA. Biomed Pharmacother 84:954–961

    CAS  PubMed  Google Scholar 

  83. Zhang J, Wang L, Chan HF et al (2017) Co-delivery of paclitaxel and tetrandrine via iRGD peptide conjugated lipid-polymer hybrid nanoparticles overcome multidrug resistance in cancer cells. Sci Rep 7:46057

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Ishak RAH, Mostafa NM, Kamel AO (2017) Stealth lipid polymer hybrid nanoparticles loaded with rutin for effective brain delivery–comparative study with the gold standard (Tween 80): optimization, characterization and biodistribution. Drug Deliv 24(1):1874–1890

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Chen PL, Lee NY, Cia CT et al (2020) A review of treatment of coronavirus disease 2019 (COVID-19): therapeutic repurposing and unmet clinical needs. Front Pharmacol 11:584956

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Chatterjee K, Sarkar S, Rao KJ et al (2014) Core/shell nanoparticles in biomedical applications. Adv Colloid Interface Sci 209:8–39

    CAS  PubMed  Google Scholar 

  87. Shah S, Famta P, Raghuvanshi RS et al (2022) Lipid polymer hybrid nanocarriers: Insights into synthesis aspects, characterization, release mechanisms, surface functionalization and potential implications Colloids Interface Sci. Commun 46:100570

    CAS  Google Scholar 

  88. Sivadasan D, Sultan MH, Madkhali O et al (2021) Polymeric lipid hybrid nanoparticles (Plns) as emerging drug delivery platform—A comprehensive review of their properties, preparation methods, and therapeutic applications. Pharmaceutics 13(8):1291

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

CTST contributed to project administration; conceptualization, ınvestigation, methodology, writing-original draft preparation, visualization, software, resources. AOP contributed to original draft preparation, visualization, software. OA contributed to conceptualization, ınvestigation, methodology, writing-original draft preparation, visualization, writing-reviewing and editing, data curation; supervision.

Corresponding author

Correspondence to Onur Alpturk.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sengel-Turk, C.T., Paksoy, A.O. & Alpturk, O. The state of the art in core–shell-type lipid–polymer hybrid nanocarriers and beyond. Polym. Bull. 81, 4771–4800 (2024). https://doi.org/10.1007/s00289-023-04951-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04951-x

Keywords

Navigation