Skip to main content
Log in

Evaluation of particle biosynthesis, p(Okra) particle bioactivity, and drug release properties using Abelmoschus esculentus (okra) plant extract

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Interest in synthesizing functional materials from natural compounds has increased recently. For this reason, compound particles attract attention due to their multifunctional properties. Abelmoschus esculentus L. (Okra) is a vegetable species belonging to the Hibiscus family, widely used for its edible unripe fruit. This study synthesized the particle from the Abelmoschus esculentus (Okra) extract (Oe) by emulsion polymerization. In this synthesis, ammonium persulfate (APS, initiator) to form free radicals at the Abelmoschus esculentus (Okra) extract (Oe) and ethylene glycol di methacrylate to cross-link the formed radicals were used. The synthesized poly(Okra) ((p(O)) particles structure Field emission scanning and Fourier transform infrared and biological activities (biocompatible, antioxidant, antimicrobial, and hydrogen peroxide scavenging) were characterized. The p(O) particle showed good antimicrobial activity against Staphylococcus aureus, Bacillus cereus, Enterococcus faecalis, and Candida albicans. It has been measured to have high antioxidant and hydrogen peroxide scavenging activity with p(O) particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data is contained within the article or supplementary material.

References

  1. Brigger I, Dubernet C, Couvreur P (2012) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 64:24–36

    Google Scholar 

  2. Couvreur P, Couarraze G, Devıssaguet JP, Puısıeux F (1996) Nanoparticles: preparation and characterization. In: Benita S (ed) Microencapsulation methods and industrial applications. Marcel Dekker Inc., New York, pp 184–211

    Google Scholar 

  3. Hong S, Choi DW, Kim HN, Park CG, Lee W, Park HH (2020) Protein-based nanoparticles as drug delivery systems. Pharmaceutics. https://doi.org/10.3390/pharmaceutics12070604

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mircioiu C, Voicu V, Anuta V, Tudose A, Celia C, Paolino D, Fresta M, Sandulovici R, Mircioiu I (2019) Mathematical modeling of release kinetics from supramolecular drug delivery systems. Pharmaceutics. https://doi.org/10.3390/pharmaceutics11030140

    Article  PubMed  PubMed Central  Google Scholar 

  5. Singh R, Lillard JW Jr (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang S, Gao J, Wang Z (2019) Outer membrane vesicles for vaccination and targeted drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 11:e1523

    PubMed  Google Scholar 

  7. Ghori MU, Mohammad MA, Rudrangi SRS, Fleming LT, Merchant HA, Smith AM, Conway BR (2017) Impact of purification on physicochemical, surface and functional properties of okra biopolymer. Food Hydrocoll 71:311–320

    CAS  Google Scholar 

  8. Alba K, Laws AP, Kontogiorgos V (2015) Isolation and characterization of acetylated LM-pectins extracted from okra pods. Food Hydrocoll 43:726–735

    CAS  Google Scholar 

  9. Kang S, Wang H, Xia L, Chen M, Li L, Cheng J, Li X, Jiang S (2020) Colorimetric film based on polyvinyl alcohol/okra mucilage polysaccharide incorporated with rose anthocyanins for shrimp freshness monitoring. Carbohydr Polym 229:115402

    CAS  PubMed  Google Scholar 

  10. Zhu XM, Xu R, Wang H, Chen JY, Tu ZC (2020) Structural properties, bioactivities, and applications of polysaccharides from okra [Abelmoschus esculentus (L.) Moench]: a review. J Agric Food Chem. https://doi.org/10.1021/acs.jafc.0c04475

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dantas TL, Alonso Buriti FC, Florentino ER (2021) Okra (Abelmoschus esculentus L.) as a potential functional food source of mucilage and bioactive compounds with technological applications and health benefits. Plants (Basel) 10(8):1683

    CAS  PubMed  Google Scholar 

  12. Raj V, Shim JJ, Lee J (2020) Grafting modification of okra mucilage: recent findings, applications, and future directions. Carbohydr Polym 246:116653

    CAS  PubMed  Google Scholar 

  13. Daniels DE, Downes DJ, Ferrer-Vicens I, Ferguson DCJ, Singleton BK, Wilson MC, Trakarnsanga K, Kurita R, Nakamura Y, Anstee DJ, Frayne J (2020) Comparing the two leading erythroid lines BEL-A and HUDEP-2. Haematologica 105:E389–E394

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Xia F, Zhong Y, Li M, Chang Q, Liao Y, Liu X, Pan R (2015) Antioxidant and anti-fatigue constituents of okra. Nutrients 7:8846–8858

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gemede HF, Haki GD, Beyene F, Woldegiorgis AZ, Rakshit SK (2016) Proximate, mineral, and antinutrient compositions of indigenous okra (Abelmoschus esculentus) pod accessions: implications for mineral bioavailability. Food Sci Nutr 4:223–233

    CAS  PubMed  Google Scholar 

  16. Ngoc TH, Ngoc QN, Van ATT, Phung NV (2008) Hypolipidemic effect of extracts from Abelmoschus esculentus L. (Malvaceae) on tyloxapol-induced hyperlipidemia in mice. Pharm Sci 35:42–46

    Google Scholar 

  17. Sabitha V, Ramachandran S, Naveen KR, Panneerselvam K (2011) Antidiabetic and antihyperlipidemic potential of Abelmoschus esculentus (L.) Moench. in streptozotocin-induced diabetic rats. J Pharm Bioallied Sci 3:397–402

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Alpaslan D (2019) Use of colorimetric hydrogel as an indicator for food packaging applications. Bull Mater Sci 42:247–258

    Google Scholar 

  19. Alpaslan D, Ersen Dudu T, Sahiner N, Aktasa N (2020) Synthesis and preparation of responsive poly(Dimethyl acrylamide/gelatin and pomegranate extract) as a novel food packaging material. Mater Sci Eng C Mater Biol Appl 108:110339

    CAS  PubMed  Google Scholar 

  20. Alpaslan D, Dudu TE, Aktaş N (2018) Synthesis, characterization and modification of novel food packaging material from dimethyl acrylamide/gelatin and purple cabbage extract. MANAS J Eng 6:15–33

    Google Scholar 

  21. Cui Z, Qiu F, Sloat BR (2006) Lecithin-based cationic nanoparticles as a potential DNA delivery system. Int J Pharm 313:206–213

    CAS  PubMed  Google Scholar 

  22. Alpaslan D, Ersen Dudu T, Aktas N (2021) Synthesis and characterization of novel organo-hydrogel based agar, glycerol and peppermint oil as a natural drug carrier/release material. Mater Sci Eng C Mater Biol Appl 118:111534

    CAS  PubMed  Google Scholar 

  23. Alpaslan D, Erşen Dudu T, Aktas N (2021) Development of onion oil-based organo-hydrogel for drug delivery material. J Dispersion Science and Technology 8:1–13

    Google Scholar 

  24. Alpaslan D, Olak T, Turan A, Ersen Dudu T, Aktas N (2022) Use of coconut oil-based organo-hydrogels in pharmaceutical applications. J Polymers and the Environment 30:666–680

    CAS  Google Scholar 

  25. Singleton VL, Rossi JAJ (1965) Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. Am J Enol Vitic 16:144–168

    CAS  Google Scholar 

  26. Alpaslan D, Olak T, Turan A, Ersen Dudu T, Aktas N (2021) A garlic oil-based organo-hydrogel for use in pH-sensitive drug release. Chem Zvesti 75:5759–5772

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Childs OE, Bardsley WG (1975) The steady-state kinetics of peroxidase with 2, 2′-azino-di-(3-ethyl benzthiazoline-6-sulphonic acid) as chromogen. Biochem J 145:97–107

    Google Scholar 

  28. Alpaslan D, Ersen Dudu T, Aktas N (2021) Evaluation of poly(agar-co-glycerol-co-castor oil) organo-hydrogel as a controlled release system carrier support material. Polym Bull 6:1–22

    Google Scholar 

  29. Ruch RJ, Cheng SJ, Klaunig JE (1989) Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis 10:1003–1008

    CAS  PubMed  Google Scholar 

  30. Alpaslan D, Dudu TE, Aktas N (2018) Synthesis, characterization and modification of novel food packaging material from dimethyl acrylamide/gelatin and purple cabbage extract. MANAS J Eng 6:110–128

    Google Scholar 

  31. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA (1983) Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm 15(1):25–35

    CAS  Google Scholar 

  32. Wu DT, Nie XR, Shen DD, Li HY, Zhao L, Zhang Q, Lin DR, Qin W (2020) Phenolic compounds, antioxidant activities, and inhibitory effects on digestive enzymes of different cultivars of okra (Abelmoschus esculentus). Molecules 25(6):1276

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Singh U, Suman A, Sharma M, Singh J, Singh A, Maurya S (2008) HPLC analysis of the phenolic profiles in different parts of chilli (Capsicum annum) and okra (Abelmoschus esculentus L.) Moench. The Internet Journal of Alternative Medicine 5:6

    Google Scholar 

  34. Khan MUA, Razaq SIA, Mehboob H, Rehman S, Al-Arjan WS, Amin R (2021) Antibacterial and hemocompatible pH-responsive hydrogel for skin wound healing application. In vitro drug release. Polymers (Basel) 13(21):3703

    CAS  PubMed  Google Scholar 

  35. Bao Y, Wang S, Li H, Wang Y, Chen H, Yuan M (2018) Characterization, stability and biological activity in vitro of cathelicidin-BF-30 loaded 4-arm star-shaped PEG-PLGA microspheres. Molecules. https://doi.org/10.3390/molecules23020497

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kıtagawa S, Sakamotu H, Tano H (2004) Inhibitory effects of flavonoids on free radical-induced hemolysis and their oxidative effects on hemoglobin. Chem Pharm Bull 52:999–1001

    Google Scholar 

  37. Kıtagawa S, Fujısawa H, Sakuraı H (1992) Scavenging effects of dihydric and polyhydric phenols on superoxide anion radicals, studied by electron spin resonance spectrometry. Chem Pharm Bull 40:304–307

    Google Scholar 

  38. Becker EM, Nissen LR, Skibsted LH (2004) Antioxidant evaluation protocols: food quality or health effects. Eur Food Res Technol 219:561–571

    CAS  Google Scholar 

  39. Shen DD, Li X, Qin YL, Li MT, Han QH, Zhou J, Lin S, Zhao L, Zhang Q, Qin W, Wu DT (2019) Physicochemical properties, phenolic profiles, antioxidant capacities, and inhibitory effects on digestive enzymes of okra (Abelmoschus esculentus) fruit at different maturation stages. J Food Sci Technol 56:1275–1286

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Al-Shawi AAA, Hameed MF, Hussein KA, Thawini HK (2021) Review on the biological applications of okra polysaccharides and prospective research. Future J Pharm Sci. https://doi.org/10.1186/s43094-021-00244-0

    Article  Google Scholar 

  41. Bors W, Heller W, Michel C, Saran M (1990) Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Methods in enzymology. Academic Press, Cambridge, pp 343–355

    Google Scholar 

  42. Sahiner N, Sagbas S, Aktas N, Silan C (2016) Inherently antioxidant and antimicrobial tannic acid release from poly(tannic acid) nanoparticles with controllable degradability. Colloids Surf B Biointerfaces 142:334–343

    CAS  PubMed  Google Scholar 

  43. Sahiner N (2014) One step poly(rutin) particle preparation as biocolloid and its characterization. Mater Sci Eng C Mater Biol Appl 44:9–16

    CAS  PubMed  Google Scholar 

  44. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol Med 26:1231–1237

    CAS  Google Scholar 

  45. Karaman İ, Şahin F, Güllüce M, Öǧütçü H, Şengül M, Adıgüzel A (2003) Antimicrobial activity of aqueous and methanol extracts of Juniperus oxycedrus L. J Ethnopharmacol 85:231–235

    CAS  PubMed  Google Scholar 

  46. Ikigai H, Nakae T, Hara Y, Shimamura T (1993) Bactericidal catechins damage the lipid bilayer. Biochem Biophys Acta 1147:132–136

    CAS  PubMed  Google Scholar 

  47. Mori A, Nishino C, Enoki N, Tawata S (1987) Antibacterial activity and mode of action of plant flavonoids against Proteus vulgaris and Staphylococcus aureus. Phytochemistry 26:2231–2234

    CAS  Google Scholar 

  48. Cushnie TP, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26:343–356

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Mirzoeva OK, Grishanin RN, Calder PC (1997) Antimicrobial action of propolis and some of its components: the effects on growth, membrane potential and motility of bacteria. Microbiol Res 152:239–246

    CAS  PubMed  Google Scholar 

  50. Bauer AZ, Swan SH, Kriebel D, Liew Z, Taylor HS, Bornehag CG, Andrade AM, Olsen J, Jensen RH, Mitchell RT, Skakkebaek NE, Jegou B, Kristensen DM (2021) Paracetamol use during pregnancy—a call for precautionary action. Nat Rev Endocrinol 17:757–766

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Tchounga CAW, Sacre PY, Cizaa P, Ngono R, Ziemons E, Hubert P, Marini RD (2021) Composition analysis of falsified chloroquine phosphate samples seized during the COVID-19 pandemic. J Pharm Biomed Anal 194:113761–113768

    Google Scholar 

  52. Chirumbolo S (2023) Paracetamol: should we hide it within the NSAID category to dismiss its real infodemiology analysis? Aging Clin Exp Res 35:903–904

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by the Van Yuzuncu Yıl University BAP with Grant # FBA-2022-10088.

Author information

Authors and Affiliations

Authors

Contributions

DA: Formal analysis, investigation, writing, original draft preparation. AT: formal analysis. TED: formal analysis. NA: review & editing, supervision.

Corresponding author

Correspondence to Duygu Alpaslan.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alpaslan, D., Turan, A., Erşen Dudu, T. et al. Evaluation of particle biosynthesis, p(Okra) particle bioactivity, and drug release properties using Abelmoschus esculentus (okra) plant extract. Polym. Bull. 81, 4557–4572 (2024). https://doi.org/10.1007/s00289-023-04923-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04923-1

Keywords

Navigation