Skip to main content
Log in

Cyanate ester blends and composites to improve dielectric, mechanical, and thermal performance for functional applications

  • REVIEW PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Technological advancements are exacting futuristic materials that exhibit comprehensive properties for diversiform applications. Cyanate Esters (CE) are promising materials that can suffice the current and future demands for myriad applications. This is possible because they exhibit multitudinal properties such as nominal density \(\left( {1.17\frac{{\text{g}}}{{{\text{m}}^{3} }}} \right)\), high dimensional stability, low moisture absorption (0.5–2.5 wt%), high-temperature operating conditions (> 300 °C), low loss factor (tan δ = \({10}^{-3}\) to 6*\({10}^{-3}\)), low dielectric constant \(\left( {k = 2.6 - 3.1\;\frac{{\text{F}}}{{\text{m}}}} \right)\), EMI shielding, low defect density, strong wave permeability, thermo-mechanical and, chemical stability, excellent UV aging resistance, radiation resistance, excellent adhesion to conducting metals up to 250 °C, resistance to microcracks, glass transition temperature (240–290 °C), and good processability. CE’s multifunctional properties paved the way for the exploitation as the matrix material in composites, an ideal thermoset for blending with various thermosets and thermoplastics resulting in phenomenal properties. CE is considered a desirable thermoset matrix for industrial applications due to its ability to meet the desired qualities, such as low cost, compatibility with conventional techniques, excellent shelf life, low curing temperature, high-temperature resistance, and low flammability. Moreover, CE-based composites and blends can be conveniently fabricated using existing techniques commonly employed for epoxy-based materials like resin transfer molding and filament winding, eliminating the need for developing new processing techniques. This review focuses on CE-based wave transparent composites, functionalization of fibers for better interfacial compatibility, shape memory polymers (SMP), EMI shielding effectiveness (EMI SE), and dielectric properties enhancement for various applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Copyright 2021, Wiley

Fig. 4

Copyright 2021, Wiley

Fig. 5
Fig. 6
Fig. 7

Copyright 2021, Elsevier Ltd

Fig. 8
Fig. 9

Copyright 2021, Elsevier Ltd

Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability and materials

All data generated or analyzed during this study are included in the submitted manuscript.

References

  1. Gu J, Dong W, Xu S et al (2017) Development of wave-transparent, light-weight composites combined with superior dielectric performance and desirable thermal stabilities. Compos Sci Technol 144:185–192. https://doi.org/10.1016/j.compscitech.2017.03.027

    Article  CAS  Google Scholar 

  2. Kinloch AJ, Taylor AC (2002) The toughening of cyanate-ester polymers Part I Physical modification using particles, fibres and woven-mats. J Mater Sci 37:433–460

    Article  ADS  CAS  Google Scholar 

  3. Hamerton I (1994) Chemistry and technology of cyanate ester resin. Blackie A&P 5:128

    Google Scholar 

  4. Anirudh S, Jayalakshmi CG, Ahad Mokhtar A et al (2022) Effect of repeated thermal cycle on compressive properties of cyanate ester/quartz-based composites. Mater Today Proc 62:5292–5297. https://doi.org/10.1016/j.matpr.2022.03.365

    Article  CAS  Google Scholar 

  5. Gu J, Dong W, Tang Y et al (2017) Ultralow dielectric, fluoride-containing cyanate ester resins with improved mechanical properties and high thermal and dimensional stabilities. J Mater Chem C Mater 5:6929–6936. https://doi.org/10.1039/c7tc00222j

    Article  CAS  Google Scholar 

  6. Ramirez ML, Walters R, Lyon RE, Savitski EP (2002) Thermal decomposition of cyanate ester resins. Polym Degrad Stabil 78(1):73–82

    Article  CAS  Google Scholar 

  7. Kessler MR (2012) Cyanate ester resins

  8. Wooster TJ, Abrol S, Hey JM, MacFarlane DR (2004) Thermal, mechanical, and conductivity properties of cyanate ester composites. Compos Part A Appl Sci Manuf 35:75–82. https://doi.org/10.1016/j.compositesa.2003.09.002

    Article  CAS  Google Scholar 

  9. Inamdar A, Cherukattu J, Anand A, Kandasubramanian B (2018) Thermoplastic-toughened high-temperature cyanate esters and their application in advanced composites. Ind Eng Chem Res 57:4479–4504

    Article  CAS  Google Scholar 

  10. Goyal S, Cochran EW (2022) Cyanate ester composites to improve thermal performance: a review. Polym Int 71(5):583-589

  11. Buckley LJ, Snow A, Griffith J, Hu HS, Ray M (1995) Low dielectric constant thermosetting resins for microelectronics. MRS Online Proc Library (OPL) 381:111

  12. Cao L, Zhang W, Zhang X et al (2014) Low-cost preparation of high-k expanded graphite/carbon nanotube/cyanate ester composites with low dielectric loss and low percolation threshold. Ind Eng Chem Res 53:2661–2672. https://doi.org/10.1021/ie402832u

    Article  CAS  Google Scholar 

  13. Shieh JY, Yang SP, Wu MF, Wang CS (2004) Synthesis and characterization of novel low-dielectric cyanate esters. J Polym Sci A Polym Chem 42:2589–2600. https://doi.org/10.1002/pola.20120

    Article  ADS  CAS  Google Scholar 

  14. Nalwa HS (1999) Handbook of low and high dielectric constant materials and their applications. Academic Press

    Google Scholar 

  15. Cygon M (1992) High performance materials for PCBs. Circuit World 19:14–18

    Article  Google Scholar 

  16. Han C, Gu A, Liang G, Yuan L (2010) Carbon nanotubes/cyanate ester composites with low percolation threshold, high dielectric constant and outstanding thermal property. In: Compos Part A: Appl Sci Manuf. pp 1321–1328

  17. Li X, Hu X, Liu X, et al (2022) A novel nanocomposite of NH2-MIL-125 modified bismaleimide-triazine resin with excellent dielectric properties. J Appl Polym Sci 139:51487. https://doi.org/10.1002/app.51487

  18. Fitz BD, Mijovic J (2000) Molecular dynamics in cyanate ester resin networks and model cyanurate compounds. Macromolecules 33:887–899. https://doi.org/10.1021/ma9911243

    Article  ADS  CAS  Google Scholar 

  19. Deniz M, Sarıboğa V, Yıldırım S, Deligöz H (2018) Influence of epoxy addition on the thermal, mechanical, and dielectrical properties of polycyanurate films. Polym Eng Sci 58:820–829. https://doi.org/10.1002/pen.24627

    Article  CAS  Google Scholar 

  20. Zhang Y, Jia C (2019) High-performance cyanate ester composites with plasma-synthesized MgSiO3-SiO2-hBN powders for thermally conductive and dielectric properties. Ceram Int 45:6491–6498. https://doi.org/10.1016/j.ceramint.2018.12.138

    Article  CAS  Google Scholar 

  21. Zhang X, Yuan L, Liang G, Gu A (2021) Modulation and mechanism of spatial structure for multi-layer cyanate ester resin composites to achieve remarkably increased energy storage density and decreased dielectric loss. J Compos Mater 55:465–474. https://doi.org/10.1177/0021998320951888

    Article  CAS  Google Scholar 

  22. Yao L, Wang J, Chen X, Lu M (2020) Synergetic effect of thermal conductivity and flame retardancy of cyanate ester composites containing DOPO and BN with great dielectric properties. Polym Adv Technol 31:126–134. https://doi.org/10.1002/pat.4754

    Article  CAS  Google Scholar 

  23. Liu H, Xie Y, Li J, et al (2021) Laser-induced nitrogen-self-doped graphite nanofibers from cyanate ester for on-chip micro-supercapacitors. Chemical Engineering Journal 404:126375. https://doi.org/10.1016/j.cej.2020.126375

  24. Lin YC, Chiang CH, Kuo CC, et al (2019) A compatible and crosslinked poly(2-allyl-6-methylphenol-co-2,6-dimethylphenol)/polystyrene blend for insulating adhesive film at high frequency. J Appl Polym Sci 136:47828. https://doi.org/10.1002/app.47828

  25. Francis PM, Jose TS (2019) Effect of zeolite on glass fibre reinforced cyanate ester nano composites. In: AIP Conf Proc Am Inst Phys Inc

  26. Lei XT, Tong LF, Xu MZ et al (2020) PEN/BADCy interlayer dielectric films with tunable microstructures via an assist of temperature for enhanced frequency stability. Chin J Polym Sci (English Edn) 38:1258–1266. https://doi.org/10.1007/s10118-020-2417-7

    Article  CAS  Google Scholar 

  27. Li Z, Chen Y, Liu Y et al (2020) Enhanced dielectric and mechanical properties of epoxy-cyanate ester resin by Al2O3 and OMMT. J Mater Sci: Mater Electron 31:8536–8545. https://doi.org/10.1007/s10854-020-03389-5

    Article  CAS  Google Scholar 

  28. Wang Z, Li S, Wang J, et al (2020) Dielectric and mechanical properties of polyimide fiber reinforced cyanate ester resin composites with varying resin contents. J Polym Res 27:1–5. https://doi.org/10.1007/s10965-020-02152-y

  29. Li HY, Li CM, Gao JG, Sun WF (2020) Ameliorated mechanical and dielectric properties of heat-resistant radome cyanate composites. Molecules 25:3117. https://doi.org/10.3390/molecules25143117

  30. Chen Y, Li Z, Liu Y et al (2019) Effect of Al2O3 on microstructure and dielectric properties of epoxy-cyanate ester composite material. J Mater Sci: Mater Electron 30:20614–20623. https://doi.org/10.1007/s10854-019-02427-1

    Article  CAS  Google Scholar 

  31. Ni R, Chen Q, Ding X (2018) Coordinating of thermal and dielectric properties for cyanate ester composites filled with silica-coated sulfonated graphene oxide hybrids. Polym Compos 39:E1565–E1573. https://doi.org/10.1002/pc.24476

    Article  CAS  Google Scholar 

  32. Institute of Electrical and Electronics Engineers 2018 IEEE/MTT-S International Microwave Symposium: 10–15 June 2018, Philadelphia, Pennsylvania, USA

  33. Chen X, Wang J, Huo S et al (2019) Preparation of flame-retardant cyanate ester with low dielectric constants and dissipation factors modified with novel phosphorus-contained Schiff base. J Therm Anal Calorim 135:3153–3164. https://doi.org/10.1007/s10973-018-7507-1

    Article  CAS  Google Scholar 

  34. Wang Y, Zhou S, Du H (2018) Investigation of dielectric properties of polymer composites with kaolin. J Mater Sci: Mater Electron 29:12360–12365. https://doi.org/10.1007/s10854-018-9349-9

    Article  CAS  Google Scholar 

  35. Lu C, Yuan L, Guan Q et al (2018) Optimizing ply pattern and composition of layered composites based on cyanate ester, carbon nanotube, and boron nitride: toward ultralow dielectric loss and high energy storage. J Phys Chem C 122:5238–5247. https://doi.org/10.1021/acs.jpcc.7b12117

    Article  CAS  Google Scholar 

  36. Jiao J, Shao Y, Huang F et al (2018) Toughening of POSS-MPS composites with low dielectric constant prepared with structure controllable micro/mesoporous nanoparticles. RSC Adv 8:40836–40845. https://doi.org/10.1039/C8RA07430E

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li W, Huang W, Kang Y et al (2019) Fabrication and investigations of G-POSS/cyanate ester resin composites reinforced by silane-treated silica fibers. Compos Sci Technol 173:7–14. https://doi.org/10.1016/j.compscitech.2019.01.022

    Article  CAS  Google Scholar 

  38. Chidambaram V, Jing T, Yang RB et al (2019) Novel solution for high-temperature dielectric application to encapsulate high-voltage power semiconductor devices. IEEE Trans Compon Packaging Manuf Technol 9:3–9. https://doi.org/10.1109/TCPMT.2018.2886810

    Article  CAS  Google Scholar 

  39. Zhang X, Wang F, Zhu Y, Qi H (2019) Cyanate ester composites containing surface functionalized BN particles with grafted hyperpolyarylamide exhibiting desirable thermal conductivities and a low dielectric constant. RSC Adv 9:36424–36433. https://doi.org/10.1039/c9ra06753a

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang J, Yuan L, Liang G et al (2019) Modulating topological structure of carbon nanotube/cyanate ester-boron nitride/cyanate ester multi-layered composites for enhancing dielectric properties, breakdown strength and energy density. J Mater Sci: Mater Electron 30:15952–15963. https://doi.org/10.1007/s10854-019-01956-z

    Article  CAS  Google Scholar 

  41. Guo Y, Chen F, Han Y et al (2018) High performance fluorinated bismaleimide-triazine resin with excellent dielectric properties. J Polym Res 25:1–9. https://doi.org/10.1007/s10965-017-1407-0

    Article  CAS  Google Scholar 

  42. Chen X, Wang J, Huo S et al (2018) Preparation of flame-retardant cyanate ester resin combined with phosphorus-containing maleimide: flame-retardant property low dielectric constant loss. J Therm Anal Calorim 132:1617–1628. https://doi.org/10.1007/s10973-018-6979-3

    Article  CAS  Google Scholar 

  43. Zheng L, Yuan L, Liang G, Gu A (2019) An in situ (K0.5Na0.5)NbO3- doped barium titanate foam framework and its cyanate ester resin composites with temperature-stable dielectric properties and low dielectric loss. Mater Chem Front 3:726–736. https://doi.org/10.1039/c9qm00006b

    Article  CAS  Google Scholar 

  44. Lei Y, Han Z, Ren D et al (2018) Design of h-BN-filled cyanate/epoxy thermal conductive composite with stable dielectric properties. Macromol Res 26:602–608. https://doi.org/10.1007/s13233-018-6090-4

    Article  CAS  Google Scholar 

  45. Li CP, Chuang CM (2021) Thermal and dielectric properties of cyanate ester cured main chain rigid-rod epoxy resin. Polymers 13:2917. https://doi.org/10.3390/polym13172917

  46. Jayalakshmi CG, Anand A, Kandasubramanian B, Joshi M (2020) High temperature composite materials for electromagnetic applications through a cost effective manufacturing process; resin film infusion. Mater Today Proc 33:2217–2222. https://doi.org/10.1016/j.matpr.2020.03.804

    Article  CAS  Google Scholar 

  47. Magisetty R, Raj AB, Datar S, et al (2020) Nanocomposite engineered carbon fabric-mat as a passive metamaterial for stealth application. J Alloys Compd 848:155771. https://doi.org/10.1016/j.jallcom.2020.155771

  48. Magisetty R, Shukla A, Kandasubramanian B (2019) Terpolymer (ABS) cermet (Ni-NiFe2O4) hybrid nanocomposite engineered 3D-carbon fabric mat as a X-band electromagnetic interference shielding material. Mater Lett 238:214–217. https://doi.org/10.1016/j.matlet.2018.12.023

    Article  CAS  Google Scholar 

  49. Satapathy A, Mahimkar K, Mondal S et al (2023) Attenuation of electromagnetic waves in polymeric terahertz imbibers: review. J Mater Sci: Mater Electron 34:516. https://doi.org/10.1007/s10854-023-09845-2

    Article  CAS  Google Scholar 

  50. Sawant KK, Satapathy A, Mahimkar K et al (2023) Recent advances in MXene nanocomposites as electromagnetic radiation absorbing materials. J Electron Mater. https://doi.org/10.1007/s11664-023-10325-w

    Article  Google Scholar 

  51. Prajapati V, Yadav K, Abhyankar AC, Kandasubramanian B (2022) PVDF based electrospun composite material for electromagnetic interference (EMI) shielding application. Polym-Plast Technol Mater 61:296–305. https://doi.org/10.1080/25740881.2021.1982969

    Article  CAS  Google Scholar 

  52. Chung DDL (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39(2): 279–285

  53. Wang B, Liang G, Jiao Y et al (2013) Two-layer materials of polyethylene and a carbon nanotube/cyanate ester composite with high dielectric constant and extremely low dielectric loss. Carbon N Y 54:224–233. https://doi.org/10.1016/j.carbon.2012.11.033

    Article  CAS  Google Scholar 

  54. Ren F, Shi Y, Ren P, et al (2017) Cyanate ester resin filled with graphene nanosheets and NiFe2O4-reduced graphene oxide nanohybrids for efficient electromagnetic interference shielding. Nano 12:667. https://doi.org/10.1142/S1793292017500667

  55. Yin J, Ma W, Gao Z, et al (2022) A review of electromagnetic shielding fabric, wave-absorbing fabric and wave-transparent fabric. Polymers 14

  56. Tang L, Yang Z, Tang Y, et al (2021) Facile functionalization strategy of PBO fibres for synchronous improving the mechanical and wave-transparent properties of the PBO fibres/cyanate ester laminated composites. Compos Part A Appl Sci Manuf 150:106622. https://doi.org/10.1016/j.compositesa.2021.106622

  57. Thomassin JM, Jérôme C, Pardoen T et al (2013) Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater Sci Eng R Rep 74:211–232

    Article  Google Scholar 

  58. Kondawar SB, Modak PR (2019) Theory of EMI shielding. In: Materials for Potential EMI Shielding Applications: Processing, Properties and Current Trends. Elsevier, pp 9–25

  59. Chen Y, Li J, Li T et al (2021) Recent advances in graphene-based films for electromagnetic interference shielding: Review and future prospects. Carbon 180:163–184. https://doi.org/10.1016/j.carbon.2021.04.091

    Article  CAS  Google Scholar 

  60. Yao Y, Jin S, Ma X, et al (2020) Graphene-containing flexible polyurethane porous composites with improved electromagnetic shielding and flame retardancy. Compos Sci Technol 200:108457. https://doi.org/10.1016/j.compscitech.2020.108457

  61. Yang X, Fan S, Li Y, et al (2020) Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos Part A Appl Sci Manuf 128:105670. https://doi.org/10.1016/j.compositesa.2019.105670

  62. Wang YY, Sun WJ, Yan DX et al (2021) Ultralight carbon nanotube/graphene/polyimide foam with heterogeneous interfaces for efficient electromagnetic interference shielding and electromagnetic wave absorption. Carbon N Y 176:118–125. https://doi.org/10.1016/j.carbon.2020.12.028

    Article  CAS  Google Scholar 

  63. Jiang D, Murugadoss V, Wang Y et al (2019) Electromagnetic interference shielding polymers and nanocomposites—a review. Polym Rev 59:280–337

    Article  CAS  Google Scholar 

  64. Guo Z, Ren P, Zhang Z et al (2022) Fabrication of carbonized spent coffee grounds/graphene nanoplates/cyanate ester composites for superior and highly absorbed electromagnetic interference shielding performance. J Mater Sci Technol 102:123–131. https://doi.org/10.1016/j.jmst.2021.05.082

    Article  CAS  Google Scholar 

  65. Zong Z, Ren F, Guo Z, et al (2021) Dual-functional carbonized loofah@GNSs-CNTs reinforced by cyanate ester composite with highly efficient electromagnetic interference shielding and thermal management. Compos B Eng 223:109132. https://doi.org/10.1016/j.compositesb.2021.109132

  66. Ren F, Guo ZZ, Guo H, et al (2018) Layer-structured design and fabrication of cyanate ester nanocomposites for excellent electromagnetic shielding with absorption-dominated characteristic. Polymers 10:933. https://doi.org/10.3390/polym10090933

  67. Ren F, Song D, Li Z et al (2018) Synergistic effect of graphene nanosheets and carbonyl iron-nickel alloy hybrid filler on electromagnetic interference shielding and thermal conductivity of cyanate ester composites. J Mater Chem C Mater 6:1476–1486. https://doi.org/10.1039/c7tc05213h

    Article  CAS  Google Scholar 

  68. Ren F, Zhu G, Wu G et al (2018) Effects of surfactant treatment on mechanical and microwave absorbing properties of graphene nanosheets/multiwalled carbon nanotubes/cyanate ester composites. Polym Compos 39:110–118. https://doi.org/10.1002/pc.23908

    Article  CAS  Google Scholar 

  69. Fan Q, Yang X, Lei H, et al (2020) Gradient nanocomposite with metastructure design for broadband radar absorption. Compos Part A Appl Sci Manuf 129:105698. https://doi.org/10.1016/j.compositesa.2019.105698

  70. CG J, Salunke AD, Joshi M, Kandasubramanian B, Anand A (2022) Cyanate ester–epoxy blends toward microwave transparent polymer composites through resin film infusion for wideband electromagnetic applications. Polym-Plast Technol Mater 61(2):145–160. https://doi.org/10.1080/25740881.2021.1967389

  71. Jayalakshmi CG, Inamdar A, Anand A, Kandasubramanian B (2019) Polymer matrix composites as broadband radar absorbing structures for stealth aircrafts. J Appl Polym Sci 136(14):47241

  72. Khatavkar N, Balasubramanian K (2016) Composite materials for supersonic aircraft radomes with ameliorated radio frequency transmission-a review. RSC Adv 6:6709–6718

    Article  ADS  CAS  Google Scholar 

  73. Tang L, Zhang J, Tang Y et al (2021) Polymer matrix wave-transparent composites: a review. J Mater Sci Technol 75:225–251

    Article  CAS  Google Scholar 

  74. Eslava S, Zhang L, Esconjauregui S, et al (2013) Metal-organic framework ZIF-8 films as low-κ dielectrics in microelectronics. Chem Mater 25:27–33

  75. Fang L, Zhou J, He C et al (2020) Understanding how intrinsic micro-pores affect the dielectric properties of polymers: an approach to synthesize ultra-low dielectric polymers with bulky tetrahedral units as cores. Polym Chem 11:2674–2680. https://doi.org/10.1039/d0py00173b

    Article  CAS  Google Scholar 

  76. Yoon SJ, Pak K, Nam T et al (2017) Surface-localized sealing of porous ultralow-k dielectric films with ultrathin (<2 nm) polymer coating. ACS Nano 11:7841–7847. https://doi.org/10.1021/acsnano.7b01998

    Article  CAS  PubMed  Google Scholar 

  77. Vengatesan MR, Devaraju S, Dinakaran K, Alagar M (2012) SBA-15 filled polybenzoxazine nanocomposites for low-k dielectric applications. J Mater Chem 22:7559–7566. https://doi.org/10.1039/c2jm16566j

    Article  CAS  Google Scholar 

  78. Luo K, Song G, Wang Y et al (2019) Low- k and recyclable high-performance POSS/polyamide composites based on Diels–Alder reaction. ACS Appl Polym Mater 1:944–952. https://doi.org/10.1021/acsapm.8b00215

    Article  CAS  Google Scholar 

  79. Bhattacharjee Y, Biswas S, Bose S (2020) Thermoplastic polymer composites for EMI shielding applications. In: Materials for potential EMI shielding applications. Elsevier, pp 73–99

  80. Jiang W, Zhang X, Chen D, et al (2021) High performance low-k and wave-transparent cyanate ester resins modified with a novel bismaleimide hollow polymer microsphere. Compos B Eng 222:109041. https://doi.org/10.1016/j.compositesb.2021.109041

  81. Cherukattu Gopinathapanicker J, Inamdar A, Anand A et al (2020) Radar transparent, impact-resistant, and high-temperature capable radome composites using polyetherimide-toughened cyanate ester resins for high-speed aircrafts through resin film infusion. Ind Eng Chem Res 59:7502–7511. https://doi.org/10.1021/acs.iecr.9b06439

    Article  CAS  Google Scholar 

  82. Jayalakshmi CG, Anand A, Kandasubramanian B, Joshi M (2019) High temperature composite materials for electromagnetic applications through a cost effective manufacturing process; Resin film infusion. In: Materials Today: Proceedings. Elsevier Ltd, pp 2217–2222

  83. Liu Z, Zhang J, Tang L, et al (2019) Improved wave-transparent performances and enhanced mechanical properties for fluoride-containing PBO precursor modified cyanate ester resins and their PBO fibers/cyanate ester composites. Compos B Eng 178:107466. https://doi.org/10.1016/j.compositesb.2019.107466

  84. Lan T, Liang Y, Lu Z, et al (2020) Study on the effect of fabric parameters on the properties of wave-transparent composites. In: IOP Conference Series: Materials Science and Engineering. Institute of Physics Publishing

  85. Kumar P, Gore PM, Magisetty R et al (2020) Poly(1,6-heptadiyne)/ABS functionalized microfibers for hydrophobic applications. J Polym Res 27:14. https://doi.org/10.1007/s10965-019-1981-4

    Article  CAS  Google Scholar 

  86. Gore PM, Kandasubramanian B (2018) Functionalized aramid fibers and composites for protective applications: a review. Ind Eng Chem Res 57:16537–16563. https://doi.org/10.1021/acs.iecr.8b04903

    Article  CAS  Google Scholar 

  87. Phadatare A, Kandasubramanian B (2020) Metal organic framework functionalized fabrics for detoxification of chemical warfare agents. Ind Eng Chem Res 59:569–586. https://doi.org/10.1021/acs.iecr.9b06695

    Article  CAS  Google Scholar 

  88. Tirumali M, Kandasubramanian B, Kumaraswamy A et al (2018) Fabrication, physicochemical characterizations and electrical conductivity studies of modified carbon nanofiber-reinforced epoxy composites: effect of 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid. Polym Plast Technol Eng 57:218–228. https://doi.org/10.1080/03602559.2017.1320719

    Article  CAS  Google Scholar 

  89. Tang L, Fan X, Tang Y, et al (2021) Calcia-doped ceria hybrid coating functionalized PBO fibers with excellent UV resistance and improved interfacial compatibility with cyanate ester resins. Appl Surf Sci 569:151124. https://doi.org/10.1016/j.apsusc.2021.151124

  90. Tang Y, Dong W, Tang L et al (2018) Fabrication and investigations on the polydopamine/KH-560 functionalized PBO fibers/cyanate ester wave-transparent composites. Compos Commun 8:36–41. https://doi.org/10.1016/j.coco.2018.03.006

    Article  Google Scholar 

  91. Tang L, Zhang J, Tang Y, et al (2020) Fluorine/adamantane modified cyanate resins with wonderful interfacial bonding strength with PBO fibers. Compos B Eng 186:107827. https://doi.org/10.1016/j.compositesb.2020.107827

  92. Tang L, Zhang J, GU J (2021) Random copolymer membrane coated PBO fibers with significantly improved interfacial adhesion for PBO fibers/cyanate ester composites. Chin J Aeronaut 34:659–668. https://doi.org/10.1016/j.cja.2020.03.007

    Article  Google Scholar 

  93. Liu Z, Zhang J, Tang Y, et al (2021) Optimization of PBO fibers/cyanate ester wave-transparent laminated composites via incorporation of a fluoride-containing linear interfacial compatibilizer. Compos Sci Technol 210:108838. https://doi.org/10.1016/j.compscitech.2021.108838

  94. Liu Z, Fan X, Zhang J, et al (2021) Improving the comprehensive properties of PBO fibres/cyanate ester composites using a hyperbranched fluorine and epoxy containing PBO precursor. Compos Part A Appl Sci Manuf 150:106596. https://doi.org/10.1016/j.compositesa.2021.106596

  95. Tang L, Zhang J, Wu C, et al (2021) UV etched random copolymer membrane coated PBO fibers/cyanate ester wave-transparent laminated composites. Compos B Eng 212:108680. https://doi.org/10.1016/j.compositesb.2021.108680

  96. Tang L, Dang J, He M et al (2019) Preparation and properties of cyanate-based wave-transparent laminated composites reinforced by dopamine/POSS functionalized Kevlar cloth. Compos Sci Technol 169:120–126. https://doi.org/10.1016/j.compscitech.2018.11.018

    Article  CAS  Google Scholar 

  97. Zegaoui A, Derradji M, Ma R et al (2018) Silane-modified carbon fibers reinforced cyanate ester/benzoxazine resin composites: Morphological, mechanical and thermal degradation properties. Vacuum 150:12–23. https://doi.org/10.1016/j.vacuum.2018.01.025

    Article  ADS  CAS  Google Scholar 

  98. Zegaoui A, Derradji M, Dayo AQ et al (2019) High-performance polymer composites with enhanced mechanical and thermal properties from cyanate ester/benzoxazine resin and short Kevlar/glass hybrid fibers. High Perform Polym 31:719–732. https://doi.org/10.1177/0954008318793181

    Article  CAS  Google Scholar 

  99. Xie Y, Hill CAS, Xiao Z et al (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos Part A Appl Sci Manuf 41:806–819

    Article  Google Scholar 

  100. Chuang W, Geng-sheng J, Lei P et al (2018) Influences of surface modification of nano-silica by silane coupling agents on the thermal and frictional properties of cyanate ester resin. Results Phys 9:886–896. https://doi.org/10.1016/j.rinp.2018.03.056

    Article  ADS  Google Scholar 

  101. Zhu M, Lia Y, Ma J (2021) Curing behavior and flexural properties of cyanate composites reinforced with rare earth- And silane-modified basalt fibers. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing Ltd

  102. You X, Chen Y, Huang Y, et al (2020) Surface coarsening of carbon fiber/cyanate ester composite for adhesion improvement of electroless copper plating as conductive patterns. Mater Chem Phys 255:123597. https://doi.org/10.1016/j.matchemphys.2020.123597

  103. Jayasree MR, Anandakumar S, Alagar M (2018) Development and characterisation of functionalised AL-MCM-41 reinforced caprolactam toughened DGEBA epoxy-cyanate ester polymer nanocomposites. Adv Polym Technol 37:1906–1916. https://doi.org/10.1002/adv.21849

    Article  CAS  Google Scholar 

  104. Izu K, Tokoro Y, Oyama T (2020) Simultaneous improvement of mechanical properties and curing temperature of cyanate ester resin by in situ generated modifier polymer having phenolic OH group. Polymer 202:122611. https://doi.org/10.1016/j.polymer.2020.122611

  105. Barrie C, Kim HI, Marques D, Zaldivar RJ (2021) Investigations on the effect of plasma treatment on the adhesive bonding behavior of ultra high modulus K13C2U/cyanate ester fiber composites. J Adhes Sci Technol 35:1263–1283. https://doi.org/10.1080/01694243.2020.1842012

    Article  CAS  Google Scholar 

  106. Zhao M, Liu L, Zhang B, et al (2020) Effect of surface functionalization of molybdenum disulfide nanosheets with polysulfone on cyanate ester nanocomposites. Colloids Surf A Physicochem Eng Asp 589:124476. https://doi.org/10.1016/j.colsurfa.2020.124476

  107. Liu Q, Wang Y, Hua XY et al (2021) A novel approach for developing boron carbide (B4C)/cyanate ester (CE) co-continuous Functionally Graded Materials (FGMs) with eliminated abrupt interfaces. J Eur Ceram Soc 41:268–273. https://doi.org/10.1016/j.jeurceramsoc.2020.08.042

    Article  CAS  Google Scholar 

  108. la Pierre des Ammbrois SD, Corazzari I, Damiano O, Cornillon L, Terenzi A, Casalegno V, Ferraris M (2020) Adhesive joining of Zerodur–CFRP–Zerodur sandwich structures for aerospace applications. Macromol Mater Eng 305(12):2000464.https://doi.org/10.1002/mame.202000464

  109. Cai T, Yuan L, Liang G et al (2019) Surface-covalent functionalized graphene oxide sheets with hyperbranched polysiloxane and Mn ion for cyanate ester resin: towards lower curing temperature and higher performance. Mater Chem Phys 234:67–74. https://doi.org/10.1016/j.matchemphys.2019.05.090

    Article  CAS  Google Scholar 

  110. Uhlig C, Kahle O, Schäfer O et al (2019) Blends of tri-block copolymers and addition curing resins: Influence of block copolymer-resin compatibility on toughness and matrix properties on toughenability. React Funct Polym 142:159–182. https://doi.org/10.1016/j.reactfunctpolym.2019.06.012

    Article  CAS  Google Scholar 

  111. Zheng X, Fei J, Gu Y, et al (2021) Constructing interfacial path for enhancing mechanical and thermal performances of carbon fiber/cyanate ester resin composite. Colloids Surf A Physicochem Eng Asp 617:126311. https://doi.org/10.1016/j.colsurfa.2021.126311

  112. Bajpai A, Saxena P, Kunze K (2020) Tribo-mechanical characterization of carbon fiber-reinforced cyanate ester resins modified with fillers. Polymers 12:1725. https://doi.org/10.3390/POLYM12081725

  113. Pisani WA, Radue MS, Patil SU, Odegard GM (2021) Interfacial modeling of flattened CNT composites with cyanate ester and PEEK polymers. Compos B Eng 211:108672. https://doi.org/10.1016/j.compositesb.2021.108672

  114. Patdiya J, Kandasubramanian B (2021) Progress in 4D printing of stimuli responsive materials. Polym-Plast Technol Mater 60:1845–1883. https://doi.org/10.1080/25740881.2021.1934016

    Article  CAS  Google Scholar 

  115. Patadiya J, Gawande A, Joshi G, Kandasubramanian B (2021) Additive manufacturing of shape memory polymer composites for futuristic technology. Ind Eng Chem Res 60:15885–15912. https://doi.org/10.1021/acs.iecr.1c03083

    Article  CAS  Google Scholar 

  116. Subash A, Kandasubramanian B (2020) 4D printing of shape memory polymers. Eur Polym J 134:109771. https://doi.org/10.1016/j.eurpolymj.2020.109771

  117. Rastogi P, Kandasubramanian B (2019) Breakthrough in the printing tactics for stimuli-responsive materials: 4D printing. Chem Eng J 366:264–304. https://doi.org/10.1016/j.cej.2019.02.085

    Article  CAS  Google Scholar 

  118. Sonatkar J, Kandasubramanian B, Ismail SO (2022) 4D printing: Pragmatic progression in biofabrication. Eur Polym J 169:111128. https://doi.org/10.1016/j.eurpolymj.2022.111128

  119. Patadiya J, Naebe M, Wang X, et al (2023) Emerging 4D printing strategies for on-demand local actuation & micro printing of soft materials. Eur Polym J 184:111778. https://doi.org/10.1016/j.eurpolymj.2022.111778

  120. Bhanushali H, Amrutkar S, Mestry S, Mhaske ST (2022) Shape memory polymer nanocomposite: a review on structure–property relationship. Polym Bull 79:3437–3493

    Article  CAS  Google Scholar 

  121. Antony GJM, Poulose P, Aruna STR et al (2021) Synthesis and properties of a new Chitosan-based shape memory polymer and its composites. ChemistrySelect 6:808–819. https://doi.org/10.1002/slct.202004712

    Article  CAS  Google Scholar 

  122. Luo L, Zhang F, Leng J (2022) Shape memory epoxy resin and its composites: from materials to applications. Research 2022:1–25. https://doi.org/10.34133/2022/9767830

  123. Karger-Kocsis J, Kéki S (2018) Review of progress in shape memory epoxies and their composites. Polymers 10:34

  124. Yamei Z, Doudou Z, Li G (2014) Shape-memory behavior of bisphenol A-type cyanate ester/carboxyl-terminated liquid nitrile rubber coreacted system. Colloid Polym Sci 292:2707–2713. https://doi.org/10.1007/s00396-014-3321-x

    Article  CAS  Google Scholar 

  125. Tang Z, Yang J, Gong J, et al (2021) Cyanate ester based shape memory polymers with enhanced toughness and tailored property. React Funct Polym 166:104982. https://doi.org/10.1016/j.reactfunctpolym.2021.104982

  126. Antony GJM, Aruna ST, Jarali CS, Raja S (2021) Electrical and thermal stimuli responsive thermoplastic shape memory polymer composites containing rGO, Fe3O4 and rGO–Fe3O4 fillers. Polym Bull 78:6267–6289. https://doi.org/10.1007/s00289-020-03427-6

    Article  CAS  Google Scholar 

  127. Chen S, Yuan L, Wang Z, et al (2019) Self-constructed nanodomain structure in thermosetting blend based on the dynamic reactions of cyanate ester and epoxy resins and its related property. Compos B Eng 177:107438. https://doi.org/10.1016/j.compositesb.2019.107438

  128. Wang Y, Zhang Y, Zhang J et al (2020) Shape recovery characteristics of shape memory cyanate ester/epoxy composite reinforced with calcium sulfate whisker. Pigm Resin Technol 50:384–393. https://doi.org/10.1108/PRT-09-2019-0087

    Article  Google Scholar 

  129. Wang Y, Ma T, Tian W et al (2018) Electroactive shape memory properties of graphene/epoxy-cyanate ester nanocomposites. Pigm Resin Technol 47:72–78. https://doi.org/10.1108/PRT-04-2017-0037

    Article  CAS  Google Scholar 

  130. Wang L, Zhang F, Liu Y, Leng J (2019) γ-rays radiation resistant shape memory cyanate ester resin and its composites with high transition temperature. Smart Mater Struct 28:075039. https://doi.org/10.1088/1361-665X/ab2559

  131. Li Z, Hu J, Ma L, Liu H (2020) High glass transition temperature shape-memory materials: Hydroxyl-terminated polydimethylsiloxane-modified cyanate ester. J Appl Polym Sci 137:48641. https://doi.org/10.1002/app.48641

  132. Ren T, Zhu G, Liu Y, Hou X (2020) An investigation on electro-induced shape memory performances of CE/EP/CB/SCF composites applied for deployable structure. J Polym Eng 40:203–210. https://doi.org/10.1515/polyeng-2019-0212

    Article  CAS  Google Scholar 

  133. Li Z, Hu J, Ma L, Liu H (2020) Shape memory CTBN/epoxy resin/cyanate ester ternary resin and their carbon fiber reinforced composites. J Appl Polym Sci 137:48756. https://doi.org/10.1002/app.48756

Download references

Acknowledgements

The authors would like to thank Dr. CP Ramanarayanan, Vice Chancellor, Defence Institute of Advanced Technology (DU), Pune for the support. The authors would like to acknowledge Dr. Prakash Gore, Ms. Niranjana Jayaprakash, and Mr. Anirudh for their relentless technical support during the spadework of the manuscript. The authors are thankful to the editor and anonymous reviewers for improving the quality of the revised manuscript by their valuable suggestions, and comments.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

AMR contributed to Material preparation, data collection analysis, and article writing; BK contributed substantially to conceptualization and discussion and reviewed the manuscript before submission; SKR contributed to the writing—review, and editing of the article before submission.

Corresponding author

Correspondence to Balasubramanian Kandasubramanian.

Ethics declarations

Conflict of interest

The authors consent to publish the article on acceptance.

Consent for publication

The authors consent to publish the article on acceptance.

Ethical approval

The submitted article complies with the ethical guidelines of the journal and does not contain the results of studies involving humans and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moulishwar Reddy, A., Kandasubramanian, B. & Rath, S. Cyanate ester blends and composites to improve dielectric, mechanical, and thermal performance for functional applications. Polym. Bull. 81, 3781–3836 (2024). https://doi.org/10.1007/s00289-023-04885-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04885-4

Keywords

Navigation