Skip to main content
Log in

Development and characterization of antimicrobial films from gums obtained from cold-pressed flaxseed oil by-product

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, antimicrobial edible films incorporated with allyl isothiocyanate in free form (FG-EO) and nanoemulsion form (FG-NE) were produced using the gum obtained from a cold-pressed flaxseed oil by-product (FG). All films were characterized in terms of physicochemical, barrier, mechanical, biodegradability, thermal, and molecular properties. The results showed that integrating allyl isothiocyanate into the films improved the thermal and barrier properties of the films and decreased the tensile strength. According to the molecular characterization, the allyl isothiocyanate antimicrobial compound showed a homogeneous distribution in the film. The FG-EO films and FG-NE films provided strong antimicrobial effect against Escherichia coli O157:H7, Salmonella spp., Listeria monocytogenes, and Staphylococcus aureus pathogenic bacteria at rates ranging from 42 to 87%. Furthermore, during 15-day storage period of fresh-cut meat samples which were packaged with FG-Control, FG-EO, and FG-NE films, significant (P < 0.05) decrease in the number of total mesophile bacteria (TMB), total psychrophile bacteria, and coliform bacteria compared to control fresh-cut meat samples was observed. As a result, it could be said that allyl isothiocyanate incorporated FG-based edible films have the potential as an alternative packaging material to improve the quality of foods and extend the shelf life of fresh-cut meat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pirsa S, Sani IK, Mirtalebi SS (2022) Nano-biocomposite based color sensors: investigation of structure, function, and applications in intelligent food packaging. Food Packag Shelf Life 31:100789

    Article  CAS  Google Scholar 

  2. Nurul Fazita M et al (2016) Green composites made of bamboo fabric and poly (lactic) acid for packaging applications—a review. Materials 9(6):435

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sun L et al (2017) Preparation and characterization of chitosan film incorporated with thinned young apple polyphenols as an active packaging material. Carbohyd Polym 163:81–91

    Article  CAS  Google Scholar 

  4. Keleş F (2002) Gıda ambalajlama ilkeleri. Atatürk üniversitesi ziraat fak

  5. Vildan E, Tontul İ, Türker S (2020) Edible coating of cereal bars using different biopolymers: effect on physical and chemical properties during storage. Gıda 45(5):1019–1029

    Google Scholar 

  6. Hernandez-Izquierdo V, Krochta J (2008) Thermoplastic processing of proteins for film formation—a review. J Food Sci 73(2):R30–R39

    Article  CAS  PubMed  Google Scholar 

  7. Baldwin EA, Hagenmaier R, Bai J (2011) Edible coatings and films to improve food quality. CRC press

  8. Sani IK et al (2022) Value-added utilization of fruit and vegetable processing by-products for the manufacture of biodegradable food packaging films. Food Chem. https://doi.org/10.1016/j.foodchem.2022.134964

    Article  Google Scholar 

  9. Chen H-H, Xu S-Y, Wang Z (2006) Gelation properties of flaxseed gum. J Food Eng 77(2):295–303

    Article  CAS  Google Scholar 

  10. Cui W, Mazza G, Biliaderis C (1994) Chemical structure, molecular size distributions, and rheological properties of flaxseed gum. J Agric Food Chem 42(9):1891–1895

    Article  CAS  Google Scholar 

  11. Wang Y et al (2008) Effect of flaxseed gum addition on rheological properties of native maize starch. J Food Eng 89(1):87–92

    Article  CAS  Google Scholar 

  12. Khalloufi S et al (2009) Flaxseed gums and their adsorption on whey protein-stabilized oil-in-water emulsions. Food Hydrocoll 23(3):611–618

    Article  CAS  Google Scholar 

  13. Salehi B et al (2019) The therapeutic potential of curcumin: a review of clinical trials. Eur J Med Chem 163:527–545

    Article  CAS  PubMed  Google Scholar 

  14. Wang Y et al (2011) Dynamic mechanical properties of flaxseed gum based edible films. Carbohyd Polym 86(2):499–504

    Article  CAS  Google Scholar 

  15. Khodaei SM et al (2022) Application of intelligent packaging for meat products: a systematic review. Vet Med Sci. https://doi.org/10.1002/vms3.1017

    Article  PubMed  PubMed Central  Google Scholar 

  16. Eghbaljoo H et al (2022) Advances in plant gum polysaccharides; sources, techno-functional properties, and applications in the food industry-a review. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2022.10.020

    Article  PubMed  Google Scholar 

  17. Naji-Tabasi S et al (2016) New studies on basil (Ocimum bacilicum L.) seed gum: part I-fractionation, physicochemical and surface activity characterization. Food Hydrocoll 52:350–358

    Article  CAS  Google Scholar 

  18. Bourbon AI et al (2011) Physico-chemical characterization of chitosan-based edible films incorporating bioactive compounds of different molecular weight. J Food Eng 106(2):111–118

    Article  CAS  Google Scholar 

  19. Rhim J-W et al (2006) Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem 54(16):5814–5822

    Article  CAS  PubMed  Google Scholar 

  20. Jahit I et al (2016) Preparation and physical properties of gelatin/CMC/chitosan composite films as affected by drying temperature. Int Food Res J 23(3):1068–1074

    CAS  Google Scholar 

  21. Memiş S et al (2017) Production and characterization of a new biodegradable fenugreek seed gum based active nanocomposite film reinforced with nanoclays. Int J Biol Macromol 103:669–675

    Article  PubMed  Google Scholar 

  22. Llana-Ruiz-Cabello M et al (2016) Development of PLA films containing oregano essential oil (Origanum vulgare L. virens) intended for use in food packaging. Food Addit Contam: Part A 33(8):1374–1386

    CAS  Google Scholar 

  23. Tornuk F et al (2018) Development of LLDPE based active nanocomposite films with nanoclays impregnated with volatile compounds. Food Res Int 107:337–345

    Article  CAS  PubMed  Google Scholar 

  24. Lian M et al (2019) Bi-layered electrospun nanofibrous membrane with osteogenic and antibacterial properties for guided bone regeneration. Coll Surf, B 176:219–229

    Article  CAS  Google Scholar 

  25. Tarladgis BG et al (1960) A distillation method for the quantitative determination of malonaldehyde in rancid foods. J Am Oil Chem Soc 37(1):44–48

    Article  CAS  Google Scholar 

  26. Bisht AS et al (2017) Studies on development and evaluation of glycerol incorporated cellulose and alginate based edible films. Indian J Agric Biochem 30(1):67–72

    Article  CAS  Google Scholar 

  27. Mercer D, Peng P (2008) Solar drying in developing countries: possibilities and pitfalls. Int union food sci technol 11(5):1–11

    Google Scholar 

  28. Akman PK et al (2021) Fabrication and characterization of probiotic lactobacillus plantarum loaded sodium alginate edible films. J Food Meas Charact 15(1):84–92

    Article  Google Scholar 

  29. Bahram S et al (2014) Whey protein concentrate edible film activated with cinnamon essential oil. J Food Process Preserv 38(3):1251–1258

    Article  CAS  Google Scholar 

  30. Acevedo-Fani A et al (2015) Edible films from essential-oil-loaded nanoemulsions: physicochemical characterization and antimicrobial properties. Food Hydrocoll 47:168–177

    Article  CAS  Google Scholar 

  31. Falguera V et al (2011) Edible films and coatings: structures, active functions and trends in their use. Trends Food Sci Technol 22(6):292–303

    Article  CAS  Google Scholar 

  32. Zúñiga R et al (2012) Physical properties of emulsion-based hydroxypropyl methylcellulose films: effect of their microstructure. Carbohyd Polym 90(2):1147–1158

    Article  Google Scholar 

  33. Rubilar JF et al (2015) Physical properties of emulsion-based hydroxypropyl methylcellulose/whey protein isolate (HPMC/WPI) edible films. Carbohyd Polym 123:27–38

    Article  CAS  Google Scholar 

  34. Han JH (2005) Innovations in food packaging. Elsevier

  35. Souza ACD et al (2013) Cassava starch composite films incorporated with cinnamon essential oil: antimicrobial activity, microstructure, mechanical and barrier properties. LWT-Food Sci Technol 54(2):346–352

    Article  CAS  Google Scholar 

  36. Kavoosi G et al (2014) Effects of essential oil on the water binding capacity, physico-mechanical properties, antioxidant and antibacterial activity of gelatin films. LWT-Food Sci Technol 57(2):556–561

    Article  CAS  Google Scholar 

  37. Boonruang K, et al (2016) Antifungal poly (lactic acid) films containing thymol and carvone. In: MATEC web of conferences. EDP sciences

  38. Mahcene Z et al (2020) Development and characterization of sodium alginate based active edible films incorporated with essential oils of some medicinal plants. Int J Biol Macromol 145:124–132

    Article  CAS  PubMed  Google Scholar 

  39. Hosseini SF et al (2013) Preparation and functional properties of fish gelatin–chitosan blend edible films. Food Chem 136(3–4):1490–1495

    Article  Google Scholar 

  40. Pérez-Gago MB, Krochta JM (2001) Lipid particle size effect on water vapor permeability and mechanical properties of whey protein/beeswax emulsion films. J Agric Food Chem 49(2):996–1002

    Article  PubMed  Google Scholar 

  41. Jouki M et al (2014) Characterization of antioxidant–antibacterial quince seed mucilage films containing thyme essential oil. Carbohyd Polym 99:537–546

    Article  CAS  Google Scholar 

  42. Zhou Y et al (2021) Effects of cinnamon essential oil on the physical, mechanical, structural and thermal properties of cassava starch-based edible films. Int J Biol Macromol 184:574–583

    Article  CAS  PubMed  Google Scholar 

  43. Hosseini SF et al (2015) Bio-based composite edible films containing Origanum vulgare L. essential oil. Ind Crops prod 67:403–413

    Article  CAS  Google Scholar 

  44. Sun H et al (2020) Antibacterial and antioxidant activities of sodium starch octenylsuccinate-based pickering emulsion films incorporated with cinnamon essential oil. Int J Biol Macromol 159:696–703

    Article  CAS  PubMed  Google Scholar 

  45. Bonilla J et al (2013) Effect of the incorporation of antioxidants on physicochemical and antioxidant properties of wheat starch–chitosan films. J Food Eng 118(3):271–278

    Article  CAS  Google Scholar 

  46. Nisar T et al (2018) Characterization of citrus pectin films integrated with clove bud essential oil: physical, thermal, barrier, antioxidant and antibacterial properties. Int J Biol Macromol 106:670–680

    Article  CAS  PubMed  Google Scholar 

  47. Espitia PJP et al (2014) Optimal antimicrobial formulation and physical–mechanical properties of edible films based on açaí and pectin for food preservation. Food Packag Shelf Life 2(1):38–49

    Article  Google Scholar 

  48. Liang S et al (2017) H2O2 oxidative preparation, characterization and antiradical activity of a novel oligosaccharide derived from flaxseed gum. Food Chem 230:135–144

    Article  CAS  PubMed  Google Scholar 

  49. Liu Y et al (2017) Improved antioxidant activity and physicochemical properties of curcumin by adding ovalbumin and its structural characterization. Food Hydrocoll 72:304–311

    Article  CAS  Google Scholar 

  50. Fang S et al (2020) Effect of sonication on the properties of flaxseed gum films incorporated with carvacrol. Int J Mol Sci 21(5):1637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shin K et al (2007) Crystalline structures, melting, and crystallization of linear polyethylene in cylindrical nanopores. Macromolecules 40(18):6617–6623

    Article  CAS  Google Scholar 

  52. Robertson GL (2005) Food packaging: principles and practice. CRC press

  53. Debandi MV, Bernal CR, Francois N (2016) Development of biodegradable films based on chitosan/glycerol blends suitable for biomedical applications

  54. Hay Y-O et al (2018) Evaluation of combinations essential oils and with evaluation of combinations essential oils and with hydrosols on antimicrobial and antioxidant activities. J Pharm Pharmacogn Res 6(3):216–230

    CAS  Google Scholar 

  55. Wattananawinrat K, Threepopnatkul P, Kulsetthanchalee C (2014) Morphological and thermal properties of LDPE/EVA blended films and development of antimicrobial activity in food packaging film. Energy Proced 56:1–9

    Article  CAS  Google Scholar 

  56. Oulkheir S et al (2017) Antibacterial activity of essential oils extracts from cinnamon, thyme, clove and geranium against a gram negative and gram positive pathogenic bacteria. J dis med plants 3(2–1):1–5

    Google Scholar 

  57. Eker B (2017) TEKİRDAĞ KÖFTESİNİN FARKLI ORANLARDA JELATİN, GLİSEROL VE KEKİK EKSTRAKTI İÇEREN ÇÖZELTİ İLE KAPLANMASININ RAF ÖMRÜNE ETKİSİNİN ARAŞTIRILMASI

  58. İncili GK et al (2021) Characterization of pediococcus acidilactici postbiotic and impact of postbiotic-fortified chitosan coating on the microbial and chemical quality of chicken breast fillets. Int J Biol Macromol 184:429–437

    Article  PubMed  Google Scholar 

  59. Klebanov G et al (1998) The antioxidant properties of lycopene. Membr Cell Biol 12(2):287–300

    CAS  PubMed  Google Scholar 

  60. Fang S et al (2019) Antimicrobial carvacrol incorporated in flaxseed gum-sodium alginate active films to improve the quality attributes of Chinese sea bass (Lateolabrax maculatus) during cold storage. Molecules 24(18):3292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salih Karasu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopuz, S., Akman, P.K., Tekin-Cakmak, Z.H. et al. Development and characterization of antimicrobial films from gums obtained from cold-pressed flaxseed oil by-product. Polym. Bull. 81, 1767–1787 (2024). https://doi.org/10.1007/s00289-023-04793-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04793-7

Keywords

Navigation