Skip to main content

Advertisement

Log in

Statistical evaluation of biocompatibility and biodegradability of chitosan/gelatin hydrogels for wound-dressing applications

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This work aims to statistically assess the biocompatibility and the biodegradability of hydrogels which synthesized to different conditions for the wound-dressing applications. The present work also focuses on providing information about the synthesis of chitosan and gelatine by using a cross-linker. Experiments were designed by using Box-Behnken experimental design method. Effects of chitosan amount, gelatin amount and glutaraldehyde amount on biocompatibility and biodegradability of hydrogels have been statistically investigated. This parameters optimized by the response surface methodology in order to maximize responses as swelling, porosity, in vitro degradation and in vitro enzymatic degradation. Structural analysis of hydrogels was performed by FTIR spectroscopy. Analysis of variance was performed to assess statistically significant differences between the parameters on the biocompatibility and the biodegradability of hydrogels by using the Design Expert 13 statistical program. Mathematical model was found for each response variable, and the optimum values of the parameters were determined. The maximum percentage swelling, porosity, in vitro degradation and in vitro enzymatic degradation were obtained 470%, 92%, 83% and 86%, respectively, under conditions that 0.2 g chitosan, 0.8 g gelatin and 0.5 mL cross-linker. The limitations due to the use of glutaraldehyde are related to its high cytotoxicity. 1-(3-Dimethylaminopropyl)-3-ethyl-carbodimide (EDC) does not form toxic aldehydes. Therefore, EDC was used in hydrogel synthesis in our study for comparison against glutaraldehyde. In this optimum conditions, the effect of the molecular weight of chitosan, cross-linker type (glutaraldehyde and EDC) and ambient pH on biocompatibility (swelling, porosity analysis) and biodegradability was determined. In this study, to improve wound healing, it is thought that the results of the statistical evaluation of the effect of the simultaneous changes of the parameters on the properties of the biomaterial in obtaining the optimum condition hydrogels will contribute to biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Augustine R, Kalarikkal N, Thomas S (2014) Advancement of wound care from grafts to bioengineered smart skin substitutes. Prog Biomater 3:103–113. https://doi.org/10.1007/s40204-014-0030-y

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wong VW, Rustad KC, Glotzbach JP, Sorkin M, Inayathullah M, Major MR, Longaker MT, Rajadas J, Gurtner GC (2011) Pullulan hydrogels improve mesenchymal stem cell delivery into high-oxidative-stress wounds. Macromol Biosci 11:1458–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen FM, Liu X (2016) Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci 53:86–168

    Article  CAS  PubMed  Google Scholar 

  4. Mao L, Hu S, Gao LYY, Zhao W, Fu L, Cheng H, Xia L, Xie S, Ye W, Shi Z, Yang G (2020) Biodegradable and electroactive regenerated bacterial cellulose/MXene (Ti3C2Tx) composite hydrogel as wound dressing for accelerating skin wound healing under electrical stimulation. Adv Healthc Mater 9:2000872. https://doi.org/10.1002/adhm.202000872

    Article  CAS  Google Scholar 

  5. Rousselle P, Montmasson M, Garnier C (2019) Extracellular matrix contribution to skin wound re-epithelialization. Matrix Biol 75–76:12–26

    Article  PubMed  Google Scholar 

  6. Jayakumar R, Prabaharan M, Sudheesh Kumar PT, Nair SV, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29:322–337

    Article  CAS  PubMed  Google Scholar 

  7. Lu S, Gao W, Gu HY (2008) Construction, application and biosafety of silver nanocrystalline chitosan wound dressing. Burns 34:623–628

    Article  PubMed  Google Scholar 

  8. Balakrishnana B, Mohanty M, Umashankar PR, Jayakrishnan A (2005) Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 26:6335–6342

    Article  Google Scholar 

  9. Fan L, Tan C, Wang L, Pan X, Cao M, Wen F, Xie W, Nie M (2013) Preparation, characterization and the effect of carboxymethylated chitosan-cellulose derivatives hydrogels on wound healing. J Appl Polym Sci https://doi.org/10.1002/APP.38456

    Article  Google Scholar 

  10. Lu G, Ling K, Zhao P, Xu Z, Deng C, Zheng H, Huang J, Chen J (2010) A novel in situ-formed hydrogel wound dressing by the photocross-linking of a chitosan derivative. Wound Rep Reg 18:70–79

    Article  Google Scholar 

  11. Xu Z, Han S, Gu Z, Wu J (2020) Advances and impact of antioxidant hydrogel in chronic wound healing. Adv Healthc Mater 9:1901502. https://doi.org/10.1002/adhm.201901502

    Article  CAS  Google Scholar 

  12. Li M, Liang Y, He J, Zhang H, Guo B (2020) Two-pronged strategy of biomechanically active and biochemically multifunctional hydrogel wound dressing to accelerate wound closure and wound healing. Chem Mater 32:9937–9953

    Article  CAS  Google Scholar 

  13. Akhtar MF, Hanif M, Ranjha NM (2016) Methods of synthesis of hydrogels a review. Saudi Pharm J 24(5):554–559

    Article  PubMed  Google Scholar 

  14. Kamoun EA, El-Refaie SK, Xin C (2017) A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res 8:217–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jurak M, Wiącek AE, Ładniak A, Przykaza K, Szafran K (2021) What affects the biocompatibility of polymers? Adv Coll Interface Sci 294:102451

    Article  CAS  Google Scholar 

  16. Huang X, Zhang Y, Zhang X, Xu L, Chen X, Wei S (2013) Influence of radiation crosslinked carboxymethyl-chitosan/gelatin hydrogel on cutaneous wound healing. Mater Sci Eng, C 33:4816–4824

    Article  CAS  Google Scholar 

  17. Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromol 8:1

    Article  CAS  Google Scholar 

  18. Ribeiro MP, Espiga A, Silva D, Baptista P, Henriques J, Silva JC, Borges JP, Pires E, Chaves P, Correia IJ (2009) Development of a new chitosan hydrogel for wound dressing. Wound Rep Reg 17:817–824

    Article  Google Scholar 

  19. Bacakova L, Filova E, Parizek M, Ruml T, Svorcik V (2011) Modulation of cell adhesion. Proliferation and differentiation on materials designed for body implants. Biotechnol Adv 29(6):739–767

    Article  CAS  PubMed  Google Scholar 

  20. Yuan Y, Hays MP, Hardwidge PR, Kim J (2017) Surface characteristics influencing bacterial adhesion to polymeric substrates. RSC Adv 7:14254–14261

    Article  CAS  Google Scholar 

  21. Mirzaei EB, Ramazani AS, Shafiee AM, Danaei M (2013) Studies on glutaraldehyde crosslinked chitosan hydrogel properties for drug delivery systems. Int J Polym Mater Polym Biomater 62:605–611

    Article  Google Scholar 

  22. Rohindra DR, Nand AV, Khurma JR (2004) Swelling properties of chitosan hydrogels. South Pacific J Nat Appl Sci 22:32–35

    Article  Google Scholar 

  23. Liu H, Wang C, Li C, Qin Y, Wang Z, Yang F, Li Z, Wang J (2018) A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Adv 8:7533–7549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu Q, Song Y, Shi X, Xu C, Bin Y (2011) Preparation and properties of chitosan derivative/poly(vinyl alcohol) blend film crosslinked with glutaraldehyde. Carbohyd Polym 84:465–470

    Article  CAS  Google Scholar 

  25. Ahmed R, Tariq M, Ali I, Asghar R, Noorunnisa Khanam P, Augustine R, Hasan A (2018) Novel electrospun chitosan/polyvinyl alcohol/zinc oxide nanofibrous mats with antibacterial and antioxidant properties for diabetic wound healing. Int J Biol Macromol 120:385–393

    Article  CAS  PubMed  Google Scholar 

  26. Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24:2339–2349

    Article  CAS  PubMed  Google Scholar 

  27. Verheul RJ, Amidi M, Steenbergen MJ, Riet E, Jiskoot W, Hennink WE (2009) Influence of the degree of acetylation on the enzymatic degradation and in vitro biological properties of trimethylated chitosans. Biomaterials 30(18):3129–3135

    Article  CAS  PubMed  Google Scholar 

  28. Yang C, Xua L, Zhoua Y, Zhang X, Huang X, Wang M, Han Y, Zhai M, Wei S, Li J (2010) A green fabrication approach of gelatin/CM-chitosan hybrid hydrogel for wound healing. Carbohyd Polym 82:1297–1305

    Article  CAS  Google Scholar 

  29. Tan WH, Takeuchi S (2007) Monodisperse Alginate Hydrogel Microbeads for Cell Encapsulation. Adv Mater 19(18):2696–2701

    Article  CAS  Google Scholar 

  30. Kaur K, Jindal R (2019) Exploring RSM-CCD-optimized chitosan-/gelatin-based hybrid polymer network containing CPM–β-CD inclusion complexes as controlled drug delivery systems. Polym Bull 76:3569–3592

    Article  CAS  Google Scholar 

  31. Olde Damınk LHH, Dıjkstra PJ, Van Luyn MJA, Van Wachem PB, Nıeuwenhuıs P, Feıjen J (1995) Glutaraldehyde as a crosslinking agent for collagen-based biomaterials. J Mater Scı Mater Med 6:460–472

    Article  Google Scholar 

  32. Baldino L, Concilio S, Cardea S, De Marco I, Reverchon E (2015) Complete glutaraldehyde elimination during chitosan hydrogel drying by SC-CO2 processing. J Supercrit Fluids 103:70–76

    Article  CAS  Google Scholar 

  33. Maitra J, Shukla VK (2014) Cross-linking in hydrogels—a review. Am J Polym Sci 4(2):25–31. https://doi.org/10.5923/j.ajps.20140402.01

    Article  Google Scholar 

  34. Ishıhara M, Ono K, Sato M, Nakanıshi K, Saito Y, Yura H, Matsui T, Hattori H, Fujita M, Kikuchi M, Kurita A (2002) Acceleration of wound contraction and healing with a photocrosslinkable chitosan hydrogel. Wound Repaır Regen. https://doi.org/10.1046/j.1524-475x.2001.00513

    Article  Google Scholar 

  35. Zhu J, Han H, Ye TT, Li FX, Wang XL, Yu JY, Wu DQ (2018) Biodegradable and pH sensitive peptide based hydrogel as controlled release system for antibacterial wound dressing application. Molecules 23:3383. https://doi.org/10.3390/molecules23123383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Taş C, Bayraktar D (1999) Chemical preparation of carbonated calcium hydroxyapatite powders at 37◦C in urea-containing synthetic body fluids. J Eur Ceram Soc 19:2573–2579

    Article  Google Scholar 

  37. Zaharia L, Chelariu R, Comaneci R (2012) Multiple direct extrusion: a new technique in grain refinement. Mater Sci Eng 550:293–299

    Article  CAS  Google Scholar 

  38. De SK, Aluru NR, Johnson B, Crone WC, Beebe DJ, Moore J (2002) Equilibrium swelling and kinetics of pH-responsive hydrogels: models, experiments, and simulations. J Microelectromech Syst 11(5):544–555

    Article  CAS  Google Scholar 

  39. Gorgieva S, Kokol V (2012) Preparation, characterization, and in vitro enzymatic degradation of chitosan gelatine hydrogel scaffolds as potential biomaterials. J Biomed Mater Res Soc Biomater. https://doi.org/10.1002/jbm.a.34106

    Article  Google Scholar 

  40. Zhao L, Li Q, Xu X, Kong W, Li X, Su Y, Yue Q, Gao B (2016) A novel Enteromorpha based hydrogel optimized with Box-Behnken response surface method: synthesis. Characterization and swelling behaviors. Chem Eng J 287:537–544

    Article  CAS  Google Scholar 

  41. Gannu R, Yamsani VV, Yamsani SK, Palem CR, Yamsani MR (2009) Optimization of hydrogels for transdermal delivery of lisinopril by box-behnken statistical design. AAPS PharmSciTech. https://doi.org/10.1208/s12249-009-9230-5

    Article  PubMed  PubMed Central  Google Scholar 

  42. Patel N, Thakkar V, Moradiya P, Gandhi T, Gohel M (2015) Optimization of curcumin loaded vaginal in-situ hydrogel by boxbehnken statistical design for contraception. J Drug Deliv Sci Technol 29:55–69

    Article  CAS  Google Scholar 

  43. Oladipo AA, Gazi M, Yilmaz E (2015) Single and binary adsorption of azo and anthraquinone dyes by chitosan-based hydrogel: selectivity factor and Box-Behnken process design. Chem Eng Res Design 10(4):264–279

    Article  Google Scholar 

  44. Liu Y, An M, Wang L, Qiu H (2014) Preparation and characterization of Chitosan-Gelatin/Glutaraldehyde Scaffolds. J Macromol Sci Part B Phys 53(2):309–325

    Article  CAS  Google Scholar 

  45. Wachiralarpphaithoon C, Iwasaki Y, Akiyoshi K (2007) Enzyme-degradable phosphorylcholine porous hydrogels cross-linked with polyphosphoesters for cell matrices. Biomaterials 28:984–999

    Article  CAS  PubMed  Google Scholar 

  46. Ehterami A, Salehi M, Farzamfar S, Vaez A, Samadian H, Sahrapeyma H, Mirzaii M, Ghorbani S, Goodarzi A (2018) In vitro and in vivo study of PCL/collagen wound dressing loaded with insulin-chitosan nanoparticles on cutaneous wound healing in rats model. Int J Biol Macromol 117:601–609

    Article  CAS  PubMed  Google Scholar 

  47. Tanuma H, Takashi S, Nishikawa K, Tungalog D, Yazawa K, Inoue Y (2010) Preparation and characterization of PEG-cross-linked chitosan hydrogel films with controllable swelling and enzymatic degradation behaviour. Carbohyd Polym 80:260–265

    Article  CAS  Google Scholar 

  48. Queiroz MF, Melo KRT, Sabry DA, Sassaki GL, Rocha HAO (2015) Does the use of chitosan contribute to oxalate kidney stone formation? Mar Drugs 13:141–158. https://doi.org/10.3390/md13010141

    Article  CAS  Google Scholar 

  49. Ubaid M, Murtaza G (2018) Fabrication and characterization of genipin cross-linked chitosan/gelatin hydrogel for pH-sensitive, oral delivery of metformin with an application of response surface methodology. Int J Biol Macromol 114:1174–1185

    Article  CAS  PubMed  Google Scholar 

  50. Kutlusoy T (2016) Preparation and characterization of chitosan-co-hyaluronic acid cryogels. Marmara University Institute of Science and Technology İstanbul, M.Sc.

    Google Scholar 

  51. Mourya VK, Inamdar NN, Tiwari A (2010) Carboxymethyl chitosan and its applications. Adv Mat Lett 1(1):11–33

    Article  CAS  Google Scholar 

  52. Patel M, Nakaji‐Hirabayashi T, Matsumura K (2019) Effect of dual‐drug‐releasing micelle–hydrogel composite on wound healing in vivo in full‐thickness excision wound rat model, Kjournal Of Bıomedıcal Materıals Research Part A 107A, 5.uaki Matsumura

  53. Denkbaş EB, Öztürk E, Özdemir N, Keçeci K, Agalar C (2004) Norfloxacin-loaded chitosan sponges as wound dressing material. J Biomater Appl. https://doi.org/10.1177/0885328204041510

    Article  PubMed  Google Scholar 

  54. Matica A, Menghiu G, Ostafe V (2017) Biodegradability Of chitosan based products. New Front Chem 26:75–86

    Google Scholar 

  55. Chiono V, Ettore P, Vozzi G, Ciardelli G, Ahluwalia A, Giusti P (2008) Genipin-crosslinked chitosan/gelatin blends for biomedical applications. J Mater Sci: Mater Med 19:889–898

    CAS  PubMed  Google Scholar 

  56. Nieto-Suárez M, López-Quintela MA, Lazzari M (2016) Preparation and characterization of crosslinked chitosan/gelatin scaffolds by ice segregation induced self-assembly. Carbohyd Polym 141:175–183

    Article  Google Scholar 

  57. Hamedi H, Moradi S, Hudson SM, Tonelli AE (2018) Chitosan based hydrogels and their applications for drug delivery in wound dressings: a review. Carbohydr Polym 199:445–460

    Article  CAS  PubMed  Google Scholar 

  58. Staroszczyk H, Sztuka K, Wolska J, Wojtasz-Pajak A, Kolodziejska I (2014) Interactions of fish gelatin and chitosan in uncrosslinked and crosslinked with EDC films: FT-IR study”. Spectrochim Acta Part A Mol Biomol Spectrosc 117:707–712

    Article  CAS  Google Scholar 

  59. Tseng HJ, Tsou TL, Wang HJ, Hsu S (2013) Characterization of chitosan–gelatin scaffolds for dermal tissue engineering. J Tissue Eng Regen Med 7:20–31

    Article  CAS  PubMed  Google Scholar 

  60. Omer AM, Sadik WAA, El-Demerdash AGM, Hassan HS (2021) Formulation of pH-sensitive aminated chitosan–gelatin crosslinked hydrogel for oral drug delivery. J Saudi Chem Soc 25:101384

    Article  CAS  Google Scholar 

Download references

Funding

The financial support of Uşak University Research Fund (Project No: UPAP 06/ 2020/TP001) is gratefully acknowledged as well.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tüzüm Demir Ayşe Pınar.

Ethics declarations

Conflicts of interests

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dilruba Öznur, K.G., Ayşe Pınar, T.D. Statistical evaluation of biocompatibility and biodegradability of chitosan/gelatin hydrogels for wound-dressing applications. Polym. Bull. 81, 1563–1596 (2024). https://doi.org/10.1007/s00289-023-04776-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04776-8

Keywords

Navigation