Skip to main content
Log in

Recent advances in preparation of polymer hydrogel composites and their applications in enzyme immobilization

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Hydrogels as three-dimensional crosslinked polymer networks are widely used in biomedical applications such as tissue engineering scaffolds, wound dressing, contact lenses, drug delivery systems, and cell or enzyme immobilization. Hydrogels are used as efficient matrixes for immobilization of various enzymes and improve their stability over a wide range of operational conditions that make them suitable for several industrial applications. The performance of hydrogels in enzyme immobilization depends on some parameters of the network structure involving the molecular weight of the polymer chain, the polymer volume fraction in the swollen state, and the corresponding mesh size. This review summarizes the recent developments of the synthetic approaches for the preparation of the natural and synthetic hydrogel composites applied for the immobilization of various enzymes. Moreover, the opportunities and challenges associated with hydrogel-based enzyme carriers are discussed and the future perspectives are drawn for applying natural and synthetic hydrogel composites in enzyme immobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Suzuki D, Horigome K, Kureha T, Matsui S, Watanabe T (2017) Polymeric hydrogel microspheres: design, synthesis, characterization, assembly and applications. Polym J 49:695–702

    CAS  Google Scholar 

  2. Bai JK, Sheng CL, Zhang Y, Wang JX (2016) Progress in enzyme responsive peptide hydrogel and its applications. Prog Biochem Biophys 43:1048–1060

    Google Scholar 

  3. Kamaci UD, Peksel A (2022) Poly(vinyl alcohol)-based electrospun nofibers: characterization and phytase immobilization. Biointerface Res Appl Chem 12:7573–7583

    CAS  Google Scholar 

  4. Kamaci UD, Peksel A (2021) Enhanced catalytic activity of immobilized phytase into polyvinyl alcohol-sodium alginate based electrospun nanofibers. Catal Lett 151:821–831

    Google Scholar 

  5. Kamaci M (2020) Polyurethane-based hydrogels for controlled drug delivery applications. Eur Polym J 123:109444

    CAS  Google Scholar 

  6. da Silva V, Amatto I, Gonsales da Rosa-Garzon N, de Oliveira A, Simões F, Santiago F, da Silva P, Leite N, Raspante Martins J, Cabral H (2021) Enzyme engineering and its industrial applications. Biotechnol Appl Biochem 69:389–409

    Google Scholar 

  7. Zhang M, Zhang Y, Yang C, Ma C, Tang J (2021) Enzyme-inorganic hybrid nanoflowers: classification, synthesis, functionalization and potential applications. Chem Eng J 415:129075

    CAS  Google Scholar 

  8. Mogharabi-Manzari M, Ghahremani MH, Sedaghat T, Shayan F, Faramarzi MA (2019) A laccase heterogeneous magnetic fibrous silica-based biocatalyst for green and one-pot cascade synthesis of chromene derivatives. Eur J Org Chem 2019:1741–1747

    CAS  Google Scholar 

  9. Mogharabi-Manzari M, Kiani M, Aryanejad S, Imanparast S, Amini M, Faramarzi MA (2018) A Magnetic heterogeneous biocatalyst composed of immobilized laccase and 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) for green one-pot cascade synthesis of 2-substituted benzimidazole and benzoxazole derivatives under mild reaction conditions. Adv Synth Catal 360:3563–3571

    CAS  Google Scholar 

  10. Mogharabi-Manzari M, Amini M, Abdollahi M, Khoobi M, Bagherzadeh G, Faramarzi MA (2018) Co-immobilization of laccase and TEMPO in the compartments of mesoporous silica for a green and one-pot cascade synthesis of coumarins by Knoevenagel condensation. ChemCatChem 10:1542–1546

    CAS  Google Scholar 

  11. Yousefi-Ahmadipour A, Bozorgi-Koshalshahi M, Mogharabi M, Amini M, Ghazi-Khansari M, Faramarzi MA (2016) Laccase-catalyzed treatment of ketoconazole, identification of biotransformed metabolites, determination of kinetic parameters, and evaluation of micro-toxicity. J Mol Catal B Enzym 133:77–84

    CAS  Google Scholar 

  12. Mogharabi-Manzari M, Heydari M, Sadeghian-Abadi S, Yousefi-Mokri M, Faramarzi MA (2019) Enzymatic dimerization of phenylacetylene by laccase immobilized on magnetic nanoparticles via click chemistry. Biocatal Biotransform 37:455–465

    CAS  Google Scholar 

  13. Jeyaraman SN, Slaughter G (2021) Membranes, immobilization, and protective strategies for enzyme fuel cell stability. Curr Opin Electrochem 29:100753

    CAS  Google Scholar 

  14. Seema M, Kumar AS (2021) Enzyme immobilization by nanoparticles. Res J Biotechnol 16:206–211

    CAS  Google Scholar 

  15. Elshaarani T, Yu H, Wang L, Zain-Ul-Abdin Z, Ullah RS, Haroon M, Khan RU, Fahad S, Khan A, Nazir A, Usman M, Naveed KUR (2018) Synthesis of hydrogel-bearing phenylboronic acid moieties and their applications in glucose sensing and insulin delivery. J Mater Chem B 6:3831–3854

    CAS  PubMed  Google Scholar 

  16. Ghosh T, Das T, Purwar R (2021) Review of electrospun hydrogel nanofiber system: synthesis properties and applications. Polym Eng Sci 61(7):1887–1911

    CAS  Google Scholar 

  17. Husain MSB, Gupta A, Alashwal BY, Sharma S (2018) Synthesis of PVA/PVP based hydrogel for biomedical applications: a review. Energy Sour A 40:2388–2393

    CAS  Google Scholar 

  18. Gao Y, Sun L, Zhang Q, Chen Y (2017) Controllable synthesis of novel hydrogel nanocomposites and their applications. J China Univ Sci Technol 47:1017–1037

    Google Scholar 

  19. Gholamali I (2021) Stimuli-responsive polysaccharide hydrogels for biomedical applications: a review. Regener Eng Transl Med 7:91–114

    CAS  Google Scholar 

  20. Salehipour M, Rezaei S, Rezaei M, Yazdani M, Mogharabi-Manzari M (2021) Opportunities and challenges in biomedical applications of metal–organic frameworks. J Inorg Organomet Polym Mater 31:4443–4462

    CAS  Google Scholar 

  21. Zhang Y, Huang Y (2021) rational design of smart hydrogels for biomedical applications. Front Chem 8:1288

    Google Scholar 

  22. Kamaci M, Kaya I (2020) Biodegradable and antibacterial poly(azomethine-urethane)-chitosan hydrogels for potential drug delivery application. Polym Adv Technol 31:898–908

    CAS  Google Scholar 

  23. Kamaci M, Kaya I (2020) Melamine-based poly(azomethine) hydrogels: mechanical, biodegradability, drug loading and antibacterial properties. Eur Polym J 108:107–115

    Google Scholar 

  24. Choi JR, Yong KW, Choi JY, Cowie AC (2019) Recent advances in photo-crosslinkable hydrogels for biomedical applications. Biotechniques 66:40–53

    CAS  PubMed  Google Scholar 

  25. Di Y, Wang P, Li C, Xu S, Tian Q, Wu T, Tian Y, Gao L (2020) Design, bioanalytical, and biomedical applications of aptamer-based hydrogels. Front Med 7:456

    Google Scholar 

  26. Bayat MR, Baghani M (2021) A review on swelling theories of pH-sensitive hydrogels. J Intell Mater Syst Struct 32:2349–2365

    CAS  Google Scholar 

  27. Peppas NA, Merrill EW (1977) Crosslinked poly(vinyl alcohol) hydrogels as swollen elastic networks. J Appl Polym Sci 21:1763–1770

    CAS  Google Scholar 

  28. Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21:3307–3329

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360

    CAS  Google Scholar 

  30. Appel EA, del Barrio J, Loh XJ, Scherman OA (2012) Supramolecular polymeric hydrogels. Chem Soc Rev 41:6195–6214

    CAS  PubMed  Google Scholar 

  31. Ghani SMM, Rabat NE, Ramli RA, Majid MF, Yahya WZN (2020) Hydrophilic comonomer impact on poly(vinyl alcohol-co-methyl methacrylate) based hydrogel coating. Proc Mater Today Proc 31:54–59

    Google Scholar 

  32. Yazdani M, Tavakoli O, Khoobi M, Wu YS, Faramarzi MA, Gholibegloo E, Farkhondeh S (2021) Beta-carotene/cyclodextrin-based inclusion complex: improved loading, solubility, stability, and cytotoxicity. J Incl Phenom Macrocycl Chem 2021:1–10

    Google Scholar 

  33. Abolmaali SS, Tamaddon AM, Salmanpour M, Mohammadi S, Dinarvand R (2017) Block ionomer micellar nanoparticles from double hydrophilic copolymers, classifications and promises for delivery of cancer chemotherapeutics. Eur J Pharm Sci 104:393–405

    CAS  PubMed  Google Scholar 

  34. Agrawal SK, Sanabria-DeLong N, Tew GN, Bhatia SR (2008) Structural characterization of PLA-PEO-PLA solutions and hydrogels: crystalline vs. amorphous PLA domains. Macromolecules 41:1774–1784

    CAS  Google Scholar 

  35. Mehra S, Nisar S, Chauhan S, Singh G, Singh V, Rattan S (2021) A dual stimuli responsive natural polymer based superabsorbent hydrogel engineered through a novel cross-linker. Polym Chem 12:2404–2420

    CAS  Google Scholar 

  36. Voci S, Gagliardi A, Molinaro R, Fresta M, Cosco D (2021) Recent advances of taxol-loaded biocompatible nanocarriers embedded in natural polymer-based hydrogels. Gels 7:33

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hernández-González AC, Téllez-Jurado L, Rodríguez-Lorenzo LM (2020) Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: a review. Carbohydr Polym 229:115514

    PubMed  Google Scholar 

  38. Zhang M, Zhao X (2020) Alginate hydrogel dressings for advanced wound management. Int J Biol Macromol 162:1414–1428

    CAS  PubMed  Google Scholar 

  39. Mohammadi NS, Khiabani MS, Ghanbarzadeh B, Mokarram RR (2020) Improvement of lipase biochemical properties via a two-step immobilization method: adsorption onto silicon dioxide nanoparticles and entrapment in a polyvinyl alcohol/alginate hydrogel. J Biotechnol 323:189–202

    CAS  PubMed  Google Scholar 

  40. Hashemnejad SM, Kundu S (2019) Rheological properties and failure of alginate hydrogels with ionic and covalent crosslinks. Soft Matter 15:7852–7862

    CAS  PubMed  Google Scholar 

  41. Yang J, Shen M, Luo Y, Wu T, Chen X, Wang Y, Xie J (2021) Advanced applications of chitosan-based hydrogels: from biosensors to intelligent food packaging system. Trends Food Sci Technol 110:822–832

    CAS  Google Scholar 

  42. Kamaci UD, Peksel A (2021) Fabrication of PVA-chitosan-based nanofibers for phytase immobilization to enhance enzymatic activity. Int J Biol Macromol 164:3315–3322

    Google Scholar 

  43. Kamaci M, Kaya I (2021) Preparation of biodegradable, and pH-sensitive poly(azomethine)-chitosan hydrogels for potential application of 5-fluoro uracil delivery. Eur Polym J 158:110680

    CAS  Google Scholar 

  44. Ravishankar K, Dhamodharan R (2020) Advances in chitosan-based hydrogels: evolution from covalently crosslinked systems to ionotropically crosslinked superabsorbents. React Funct Polym 149:104517

    CAS  Google Scholar 

  45. Hamedi H, Moradi S, Hudson SM, Tonelli AE (2018) Chitosan based hydrogels and their applications for drug delivery in wound dressings: a review. Carbohydr Polym 199:445–460

    CAS  PubMed  Google Scholar 

  46. Kong M, Chen X (2018) The novel medical thermoresponsive hydrogel derived from chitosan. Curr Org Chem 22:620–627

    CAS  Google Scholar 

  47. Islam A, Riaz M, Yasin T (2013) Structural and viscoelastic properties of chitosan-based hydrogel and its drug delivery application. Int J Biol Macromol 59:119–124

    CAS  PubMed  Google Scholar 

  48. Odeh AO, Osifo P, Noemagus H (2013) Chitosan: a low cost material for the production of membrane for use in PEMFC-A review. Energy Sour A 35:152–163

    CAS  Google Scholar 

  49. Lin Y, Fang GG, Huo D (2015) Research progress on preparation methods and applications of dextran-based hydrogels. Chem Ind For Prod 35:148–152

    CAS  Google Scholar 

  50. Chen F, Wu Z, Jin Y (2005) Application research on dextran-based hydrogel and its drug controlled release. Chin J Repar Reconstr Surg 19:919–922

    CAS  Google Scholar 

  51. Van Tomme SR, Hennink WE (2007) Biodegradable dextran hydrogels for protein delivery applications. Expert Rev Med Dev 4:147–164

    Google Scholar 

  52. Zhang ZD, Xu YQ, Chen F, Luo JF, Liu CD (2019) Sustained delivery of vascular endothelial growth factor using a dextran/poly(lactic-co-glycolic acid)-combined microsphere system for therapeutic neovascularization. Heart Vessels 34:167–176

    PubMed  Google Scholar 

  53. Chen JX, Cao LJ, Shi Y, Wang P, Chen JH (2016) In situ supramolecular hydrogel based on hyaluronic acid and dextran derivatives as cell scaffold. J Biomed Mater Res A 104:2263–2270

    CAS  PubMed  Google Scholar 

  54. Sun J, Xiao C, Tan H, Hu X (2013) Covalently crosslinked hyaluronic acid-chitosan hydrogel containing dexamethasone as an injectable scaffold for soft tissue engineering. J Appl Polym Sci 129:682–688

    CAS  Google Scholar 

  55. Janmohammadi M, Nourbakhsh MS, Bonakdar S (2021) Electrospun skin tissue engineering scaffolds based on polycaprolactone/hyaluronic acid/l-ascorbic acid. Fibers Polym 22:19–29

    CAS  Google Scholar 

  56. Trombino S, Servidio C, Curcio F, Cassano R (2019) Strategies for hyaluronic acid-based hydrogel design in drug delivery. Pharmaceutics 11:407

    CAS  PubMed  PubMed Central  Google Scholar 

  57. de Souza AF, Paretsis NF, De Zoppa ALDV (2020) What is the evidence of hyaluronic acid and polyacrylamide hydrogel in intra-articular therapy in equines? systematic literature review. J Equine Vet Sci 86:102909

    PubMed  Google Scholar 

  58. Azizur Rahman M (2019) Collagen of extracellular matrix from marine invertebrates and its medical applications. Mar Drugs 17:118

    PubMed  Google Scholar 

  59. Heinemann S, Coradin T, Desimone MF (2013) Bio-inspired silica-collagen materials: applications and perspectives in the medical field. Biomater Sci 1:688–702

    CAS  PubMed  Google Scholar 

  60. Mandal A, Panigrahi S, Zhang C (2010) Collagen as biomaterial for medical application-drug delivery and scaffolds for tissue regeneration: a review. Biol Eng 2:63–88

    Google Scholar 

  61. Irastorza A, Zarandona I, Andonegi M, Guerrero P, de la Caba K (2021) The versatility of collagen and chitosan: From food to biomedical applications. Food Hydrocoll 116:106633

    CAS  Google Scholar 

  62. Pourjavadi A, Samadi M, Ghasemzadeh H (2008) Temperature sensitive superabsorbent hydrogels from poly(N-t-butyl acrylamide-co-acrylamide) grafted on sodium alginate. Macromol Symp 274:177–183

    CAS  Google Scholar 

  63. Weska RF, Achilli M, Beppu MM, Mantovani D (2012) Improvement of collagen hydrogel scaffolds properties by the addition of konjac glucomannan. Adv Mater Res 409:187–192

    CAS  Google Scholar 

  64. Kang JI, Park KM (2021) Advances in gelatin-based hydrogels for wound management. J Mater Chem B 9:1503–1520

    CAS  PubMed  Google Scholar 

  65. Chen J, Wang MW, Xu JJ, Wu XY, Yao J (2020) Gelatin methacryloyl hydrogel eye pad loaded with amniotic extract prevents symblepharon in rabbit eyes. Riv Eur Sci Med Farmacol Sci 24:10134–10142

    CAS  Google Scholar 

  66. Pulat M, Akalin GO (2013) Preparation and characterization of gelatin hydrogel support for immobilization of Candida Rugosa lipase. Artif Cells Nanomed Biotechnol 41:145–151

    CAS  PubMed  Google Scholar 

  67. Kamaci UD, Kamaci M (2020) Preparation of polyvinyl alcohol, chitosan and polyurethane-based pH-sensitive and biodegradable hydrogels for controlled drug release applications. Int J Polym Mater Polym Biomater 69:1167–1177

    Google Scholar 

  68. Jiang S, Liu S, Feng W (2011) PVA hydrogel properties for biomedical application. J Mech Behav Biomed Mater 4:1228–1233

    CAS  PubMed  Google Scholar 

  69. Yang S, Liu G, Wang X, Song J (2010) Electroresponsive behavior of a sulfonated poly(vinyl alcohol) hydrogel and its application to electrodriven artificial fish. J Appl Polym Sci 117:2346–2353

    CAS  Google Scholar 

  70. More SM, Kulkarni RV, Sa B, Kayane NV (2010) Glutaraldehyde-crosslinked poly(vinyl alcohol) hydrogel discs for the controlled release of antidiabetic drug. J Appl Polym Sci 116:1732–1738

    CAS  Google Scholar 

  71. Li W, Xue F, Cheng R (2007) Synthesis, characterization and swelling properties of a chemically cross-linked poly(vinyl alcohol) hydrogel. Front Chem China 2:188–192

    Google Scholar 

  72. Gholap SG, Jog JP, Badiger MV (2004) Synthesis and characterization of hydrophobically modified poly(vinyl alcohol) hydrogel membrane. Polymer 45:5863–5873

    CAS  Google Scholar 

  73. Çay A, Mohsen M (2013) Properties of electrospun poly(vinyl alcohol) hydrogel nanofibers crosslinked with 1,2,3,4-butanetetracarboxylic acid. J Appl Polym Sci 129:3140–3149

    Google Scholar 

  74. Moreno RO, Penott-Chang EK, Rojas de Gáscue B, Müller AJ (2017) The effect of the solvent employed in the synthesis of hydrogels of poly (acrylamide-co-methyl methacrylate) on their structure, properties and possible biomedical applications. Eur Polym J 88:148–160

    CAS  Google Scholar 

  75. Nita LE, Nistor MT, Chiriac AP, Neamtu I (2012) Cross-linking structural effect of hydrogel based on 2-hydroxyethyl methacrylate. Ind Eng Chem Res 51:7769–7776

    CAS  Google Scholar 

  76. Zhao W, Lenardi C, Webb P, Liu C, Santaniello T, Gassa F (2013) A methodology to analyse and simulate mechanical characteristics of poly (2-hydroxyethyl methacrylate) hydrogel. Polym Int 62:1059–1067

    CAS  Google Scholar 

  77. Zhang Y, Mao J, Jiang W, Zhang S, Tong L, Mao J, Wei G, Zuo M, Ni Y (2021) Lignin sulfonate induced ultrafast polymerization of double network hydrogels with anti-freezing, high strength and conductivity and their sensing applications at extremely cold conditions. Composites B Eng 217:108879

    CAS  Google Scholar 

  78. Zhao Y, Liu W, Yang X, Xu H (2008) The studies on the stimuli-response of poly (N, N-dimethylamino ethyl methacrylate/acrylic acid-co-acrylamide) complex hydrogel under DC electric field. J Appl Polym Sci 110:2234–2242

    CAS  Google Scholar 

  79. Bardajee GR, Hooshyar Z (2013) Novel potentially biocompatible nanoporous hydrogel based on poly ((2-dimethylaminoethyl) methacrylate) grafted onto salep: synthesis, swelling behavior and drug release study. J Polym Res 20:1–8

    Google Scholar 

  80. Suljovrujic E, Micic M (2015) Smart poly(oligo(propylene glycol) methacrylate) hydrogel prepared by gamma radiation. Nucl Instrum Methods Phys Res Sect B 342:206–214

    CAS  Google Scholar 

  81. Contardi M, Kossyvaki D, Picone P, Summa M, Guo X, Heredia-Guerrero JA, Giacomazza D, Carzino R, Goldoni L, Scoponi G, Rancan F, Bertorelli R, Di Carlo M, Athanassiou A, Bayer IS (2021) Electrospun polyvinylpyrrolidone (PVP) hydrogels containing hydroxycinnamic acid derivatives as potential wound dressings. Chem Eng J 409:128144

    CAS  Google Scholar 

  82. Gong Y, Wang Q, Wang H, Guan S (2020) Preparation and properties of polyvinye alconol/polyvinylpyrrolidone/iodine composite hydrogels. Gaodeng Xuexiao Huaxue Xuebao/Chem J Chin Univ 41:2078–2084

    CAS  Google Scholar 

  83. Kadłubowski S, Henke A, Ulański P, Rosiak JM (2010) Hydrogels of polyvinylpyrrolidone (PVP) and poly(acrylic acid) (PAA) synthesized by radiation-induced crosslinking of homopolymers. Radiat Phys Chem 79:261–266

    Google Scholar 

  84. Leone G, Consumi M, Lamponi S, Bonechi C, Tamasi G, Donati A, Rossi C, Magnani A (2019) Thixotropic PVA hydrogel enclosing a hydrophilic PVP core as nucleus pulposus substitute. Mater Sci Eng C 98:696–704

    CAS  Google Scholar 

  85. Bharali DJ, Sahoo SK, Mozumdar S, Maitra A (2003) Cross-linked polyvinylpyrrolidone nanoparticles: a potential carrier for hydrophilic drugs. J Colloid Interface Sci 258:415–423

    CAS  PubMed  Google Scholar 

  86. El-Hag Ali A, Shawky HA, Abd El Rehim HA, Hegazy EA (2003) Synthesis and characterization of PVP/AAc copolymer hydrogel and its applications in the removal of heavy metals from aqueous solution. Eur Polym J 39:2337–2344

    CAS  Google Scholar 

  87. Kim YH, Kim B (2020) Preparation of poly(ethylene glycol) hydrogel particles containing gold nanoparticles by in situ polymerization. Polymer (Korea) 44:784–789

    Google Scholar 

  88. Noh S, Gong HY, Lee HJ, Koh WG (2021) Electrically conductive micropatterned polyaniline-poly(Ethylene glycol) composite hydrogel. Materials 14:1–12

    Google Scholar 

  89. Jiang H, Qin S, Dong H, Lei Q, Su X, Zhuo R, Zhong Z (2015) An injectable and fast-degradable poly(ethylene glycol) hydrogel fabricated via bioorthogonal strain-promoted azide-alkyne cycloaddition click chemistry. Soft Matter 11:6029–6036

    CAS  PubMed  Google Scholar 

  90. Kim JH, Kim JG, Kim D, Kim YH (2005) Preparation and properties of PEG hydrogel from PEG macromonomer with sulfonate end group. J Appl Polym Sci 96:56–61

    CAS  Google Scholar 

  91. Sun JX, Wang YL, Dou SH (2012) A novel positively thermo-sensitive hydrogel based on ethylenediaminetetraacetic dianhydride and piperazine: design, synthesis and characterization. Chin Chem Lett 23:97–100

    CAS  Google Scholar 

  92. Meenach SA, Shapiro JM, Hilt JZ, Anderson KW (2013) Characterization of PEG-iron oxide hydrogel nanocomposites for dual hyperthermia and paclitaxel delivery. J Biomater Sci Polym Ed 24:1112–1126

    CAS  PubMed  Google Scholar 

  93. Hamid ZAA, Blencowe A, Qiao G, Stevens G (2013) Effect of EDA/PEGDGE mole ratios on PEG-based hydrogel scaffolds properties. Trans Tech Publication, pp 681–685

    Google Scholar 

  94. Tan G, Liao J, Ning C, Zhang L (2012) Preparation, characterization, and drug-release properties of PEG-DA-based copolymer hydrogel microspheres. J Appl Polym Sci 125:3509–3516

    CAS  Google Scholar 

  95. Chen Z, Chen Y, Hedenqvist MS, Chen C, Cai C, Li H, Liu H, Fu J (2021) Multifunctional conductive hydrogels and their applications as smart wearable devices. J Mater Chem B 9:2561–2583

    CAS  PubMed  Google Scholar 

  96. Hoang Thi TT, Sinh LH, Huynh DP, Nguyen DH, Huynh C (2020) Self-assemblable polymer smart-blocks for temperature-induced injectable hydrogel in biomedical applications. Front Chem 8:19

    PubMed  PubMed Central  Google Scholar 

  97. Le TMD, Nguyen VVL, Trinh TA, Pham NS, Lee DS, Huynh DP (2021) Sulfonamide functionalized amino acid-based pH- and temperature-sensitive biodegradable injectable hydrogels: synthesis, physicochemical characterization and in vivo degradation kinetics. J Appl Polym Sci 138:50488

    CAS  Google Scholar 

  98. Azimi S, Farahani A, Docoslis A, Vahdatifar S (2021) Developing an integrated microfluidic and miniaturized electrochemical biosensor for point of care determination of glucose in human plasma samples. Anal Bioanal Chem 413:1441–1452

    CAS  PubMed  Google Scholar 

  99. Salehipour M, Rezaei S, Mosafer J, Pakdin-Parizi Z, Motaharian A, Mogharabi-Manzari M (2021) Recent advances in polymer-coated iron oxide nanoparticles as magnetic resonance imaging contrast agents. J Nanopart Res 23:1–35

    Google Scholar 

  100. Li L, He Y, Zheng X, Yi L, Nian W, Abadi PP (2021) Progress on preparation of pH/temperature-sensitive intelligent hydrogels and applications in target transport and controlled release of drugs. Int J Polym Sci, 2021

  101. Singh NK, Lee DS (2014) In situ gelling pH- and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery. J Controll Release 193:214–227

    CAS  Google Scholar 

  102. Grassi G, Farra R, Caliceti P, Guarnieri G, Salmaso S, Carenza M, Grassi M (2005) Temperature-sensitive hydrogels: potential therapeutic applications. Am J Drug Deliv 3:239–251

    CAS  Google Scholar 

  103. Hendi A, Hassan MU, Elsherif M, Alqattan B, Park S, Yetisen AK, Butt H (2020) Healthcare applications of pH-sensitive hydrogel-based devices: a review. Int J Nanomed 15:3887–3901

    CAS  Google Scholar 

  104. Mayorova OA, Jolly BCN, Verkhovskii RA, Plastun VO, Sindeeva OA, Douglas TEL (2021) Ph-sensitive dairy-derived hydrogels with a prolonged drug release profile for cancer treatment. Materials 14:1–13

    Google Scholar 

  105. El-Din HMN, El-Naggar AWM, Fadle FIAE (2013) Radiation synthesis of ph-sensitive hydrogels from carboxymethyl cellulose/poly(ethylene oxide) blends as drug delivery systems. Int J Polym Mater Polym Biomater 62:711–718

    CAS  Google Scholar 

  106. Gao X, He C, Xiao C, Zhuang X, Chen X (2013) Biodegradable pH-responsive polyacrylic acid derivative hydrogels with tunable swelling behavior for oral delivery of insulin. Polymer 54:1786–1793

    CAS  Google Scholar 

  107. Sorber J, Steiner G, Schulz V, Guenther M, Gerlach G, Salzer R, Arndt KF (2008) Hydrogel-based piezoresistive pH sensors: investigations using FT-IR attenuated total reflection spectroscopic imaging. Anal Chem 80:2957–2962

    CAS  PubMed  Google Scholar 

  108. Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. pp 29–45

  109. Ehrick JD, Luckett MR, Khatwani S, Wei Y, Deo SK, Bachas LG, Daunert S (2009) Glucose responsive hydrogel networks based on protein recognition. Macromol Biosci 9:864–868

    CAS  PubMed  Google Scholar 

  110. Tierney S, Hasle Falch BM, Hjelme DR, Stokke BT (2009) Determination of glucose levels using a functionalized hydrogel-optical fiber biosensor: toward continuous monitoring of blood glucose in vivo. Anal Chem 81:3630–3636

    CAS  PubMed  Google Scholar 

  111. Valuev IL, Vanchugova LV, Valuev LI (2011) Glucose-sensitive hydrogel systems. Polym Sci Ser A 53:385–389

    CAS  Google Scholar 

  112. Yin R, Wang K, Han J, Nie J (2010) Photo-crosslinked glucose-sensitive hydrogels based on methacrylate modified dextran-concanavalin A and PEG dimethacrylate. Carbohydr Polym 82:412–418

    CAS  Google Scholar 

  113. Chen X, Li H, Lam KY (2020) A multiphysics model of photo-sensitive hydrogels in response to light-thermo-pH-salt coupled stimuli for biomedical applications. Bioelectrochemistry 135:107584

    CAS  PubMed  Google Scholar 

  114. Jiang W, Liu H, Li R, Ye G, Wang L, Chen B, Yin L, Shi Y (2017) Tunable liquid microlens arrays actuated by infrared light-responsive graphene microsheets. J Micromech Microeng 27:85006

    Google Scholar 

  115. Lo CW, Zhu D, Jiang H (2011) An infrared-light responsive graphene-oxide incorporated poly(N-isopropylacrylamide) hydrogel nanocomposite. Soft Matter 7:5604–5609

    CAS  Google Scholar 

  116. Li L, Xing X, Liu Z (2012) Triply-responsive (thermo/light/pH) copolymeric hydrogel of N-isopropylacrylamide with an azobenzene-containing monomer. J Appl Polym Sci 124:1128–1136

    CAS  Google Scholar 

  117. Zhao YL, Fraser Stoddart J (2009) Azobenzene-based light-responsive hydrogel system. Langmuir 25:8442–8446

    CAS  PubMed  Google Scholar 

  118. Zhou L, Wang Z, Wu C, Cong Y, Zhang R, Fu J (2020) Highly sensitive pressure and strain sensors based on stretchable and recoverable ion-conductive physically cross-linked double-network hydrogels. ACS Appl Mater Interfaces 12:51969–51977

    CAS  PubMed  Google Scholar 

  119. Robby AI, Lee G, Lee KD, Jang YC, Park SY (2021) GSH-responsive self-healable conductive hydrogel of highly sensitive strain-pressure sensor for cancer cell detection. Nano Today 39:101178

    CAS  Google Scholar 

  120. Baït N, Grassl B, Derail C, Benaboura A (2011) Hydrogel nanocomposites as pressure-sensitive adhesives for skin-contact applications. Soft Matter 7:2025–2032

    Google Scholar 

  121. Paulino AT, Fajardo AR, Junior AP, Muniz EC, Tambourgi EB (2011) Two-step synthesis and properties of a magnetic-field-sensitive modified maltodextrin-based hydrogel. Polym Int 60:1324–1333

    CAS  Google Scholar 

  122. Reddy NN, Mohan YM, Varaprasad K, Ravindra S, Joy PA, Raju KM (2011) Magnetic and electric responsive hydrogel-magnetic nanocomposites for drug-delivery application. J Appl Polym Sci 122:1364–1375

    CAS  Google Scholar 

  123. Zhang S, Zhai Y, Zhang Z (2011) Study on polyvinly-alcohol(PVA)/iron oxide black(Fe3O4) and polyvinly-alcohol(PVA)/iron oxide red(Fe2O3) magnetic sensitive hydrogel. Adv Mater Res 287:2032–2035

    Google Scholar 

  124. Sheldon RA, van Pelt S (2013) Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev 42:6223–6235

    CAS  PubMed  Google Scholar 

  125. Zahirinejad S, Hemmati R, Homaei A, Dinari A, Hosseinkhani S, Mohammadi S, Vianello F (2021) Nano-organic supports for enzyme immobilization: scopes and perspectives. Colloids Surf B Biointerfaces 204:111774

    CAS  PubMed  Google Scholar 

  126. Arica MY, Kaçar Y, Ergene A, Denizli A (2001) Reversible immobilization of lipase on phenylalanine containing hydrogel membranes. Process Biochem 36:847–854

    CAS  Google Scholar 

  127. Kim HJ, Jin JN, Kan E, Kim KJ, Lee SH (2017) Bacterial cellulose-chitosan composite hydrogel beads for enzyme immobilization. Biotechnol Bioprocess Eng 22:89–94

    CAS  Google Scholar 

  128. Park S, Kim SH, Won K, Choi JW, Kim YH, Kim HJ, Yang YH, Lee SH (2015) Wood mimetic hydrogel beads for enzyme immobilization. Carbohydr Polym 115:223–229

    CAS  PubMed  Google Scholar 

  129. Ying H, Zhang LF, Wu D, Lei QF, Guo YS, Fang WJ (2017) Ionic strength-response hyperbranched polyglycerol/polyacrylic acid hydrogel for the reversible immobilization of enzyme and the synthesis of biodiesel. Energy Convers Manage 144:303–311

    CAS  Google Scholar 

  130. Choi D, Lee W, Lee Y, Kim DN, Park J, Koh WG (2008) Fabrication of macroporous hydrogel membranes using photolithography for enzyme immobilization. J Chem Technol Biotechnol 83:252–259

    CAS  Google Scholar 

  131. Verma A, Thakur S, Mamba G, Prateek RK, Gupta PT, Thakur VK (2020) Graphite modified sodium alginate hydrogel composite for efficient removal of malachite green dye. Int J Biol Macromol 148:1130–1139

    CAS  PubMed  Google Scholar 

  132. Iveković D, Milardović S, Grabarić BS (2004) Palladium hexacyanoferrate hydrogel as a novel and simple enzyme immobilization matrix for amperometric biosensors. Biosens Bioelectron 20:872–878

    PubMed  Google Scholar 

  133. Magnin D, Dumitriu S, Chornet E (2003) Immobilization of Enzymes into a Polyionic Hydrogel: ChitoXan. J Bioact Compatible Polym 18:355–373

    CAS  Google Scholar 

  134. Xu K, Chen X, Zheng R, Zheng Y (2020) Immobilization of multi-enzymes on support materials for efficient biocatalysis. Front Bioeng Biotechnol 8:660

    PubMed  PubMed Central  Google Scholar 

  135. Liang H, Jiang S, Yuan Q, Li G, Wang F, Zhang Z, Liu J (2016) Co-immobilization of multiple enzymes by metal coordinated nucleotide hydrogel nanofibers: improved stability and an enzyme cascade for glucose detection. Nanoscale 8:6071–6078

    CAS  PubMed  Google Scholar 

  136. Matsumoto T, Isogawa Y, Tanaka T, Kondo A (2018) Streptavidin-hydrogel prepared by sortase a-assisted click chemistry for enzyme immobilization on an electrode. Biosens Bioelectron 99:56–61

    CAS  PubMed  Google Scholar 

  137. Meredith MT, Giroud F, Minteer SD (2012) Azine/hydrogel/nanotube composite-modified electrodes for NADH catalysis and enzyme immobilization. Electrochim Acta 72:207–214

    CAS  Google Scholar 

  138. Yang D, Zhao J, Wang X, Shi J, Zhang S, Jiang Z (2017) Monolithic biocatalytic systems with enhanced stabilities constructed through biomimetic silicification-induced enzyme immobilization on rGO/FeOOH hydrogel. Biochem Eng J 117:52–61

    CAS  Google Scholar 

  139. Elnashar MMM, Yassin MA, Kahil T (2008) Novel thermally and mechanically stable hydrogel for enzyme immobilization of penicillin G acylase via covalent technique. J Appl Polym Sci 109:4105–4111

    CAS  Google Scholar 

  140. Zhou J, Xu G, Ni Y (2020) Stereochemistry in asymmetric reduction of bulky-bulky ketones by alcohol dehydrogenases. ACS Catal 10:10954–10966

    CAS  Google Scholar 

  141. Dwamena AK, Woo SH, Kim CS (2020) Enzyme immobilization on porous chitosan hydrogel capsules formed by anionic surfactant gelation. Biotechnol Lett 42:845–852

    CAS  PubMed  Google Scholar 

  142. Zhang Y, Ji C (2010) Electro-induced covalent cross-linking of chitosan and formation of chitosan hydrogel films: its application as an enzyme immobilization matrix for use in a phenol sensor. Anal Chem 82:5275–5281

    CAS  PubMed  Google Scholar 

  143. Shiroya T, Tamura N, Yasui M, Fujimoto K, Kawaguchi H (1995) Enzyme immobilization on thermosensitive hydrogel microspheres. Colloids Surf B Biointerfaces 4:267–274

    CAS  Google Scholar 

  144. Kondo A, Fukuda H (1997) Preparation of thermo-sensitive magnetic hydrogel microspheres and application to enzyme immobilization. J Ferment Bioeng 84:337–341

    CAS  Google Scholar 

  145. Kim B, Lee Y, Lee K, Koh WG (2009) Immobilization of enzymes within hydrogel microparticles to create optical biosensors for the detection of organophosphorus compounds. Curr Appl Phys 9:e225–e228

    Google Scholar 

  146. Raafat AI, Araby E, Lotfy S (2012) Enhancement of fibrinolytic enzyme production from Bacillus subtilis via immobilization process onto radiation synthesized starch/dimethylaminoethyl methacrylate hydrogel. Carbohydr Polym 87:1369–1374

    CAS  Google Scholar 

  147. Gan W, Li N, Yuan Y, Liang L, Yang M (2021) A mechanically stable and high-sensitivity glucose-sensitive membrane based on the entrapping of immobilized GODs in PVA+PEG composite hydrogels. IEEE Sens J 21:193–198

    CAS  Google Scholar 

  148. Ozay H, Tarımeri N, Gungor Z, Demirbakan B, Özcan B, Sezgintürk MK, Ozay O (2020) A new approach to synthesis of highly dispersed gold nanoparticles via glucose oxidase-immobilized hydrogel and usage in the reduction of 4-nitrophenol. ChemistrySelect 5:9143–9152

    CAS  Google Scholar 

  149. Kim GJ, Yoon KJ, Kim KO (2019) Glucose-responsive poly(vinyl alcohol)/β-cyclodextrin hydrogel with glucose oxidase immobilization. J Mater Sci 54:12806–12817

    CAS  Google Scholar 

  150. Shen X, Yang M, Cui C, Cao H (2019) In situ immobilization of glucose oxidase and catalase in a hybrid interpenetrating polymer network by 3D bioprinting and its application. Colloids Surf Physicochem Eng Asp 568:411–418

    CAS  Google Scholar 

  151. Dawes CS, Konig H, Lin C-C (2017) Enzyme-immobilized hydrogels to create hypoxia for in vitro cancer cell culture. J Biotechnol 248:25–34

    CAS  PubMed  Google Scholar 

  152. Van Nguyen K, Minteer SD (2015) Investigating DNA hydrogels as a new biomaterial for enzyme immobilization in biobatteries. Chem Commun 51:13071–13073

    Google Scholar 

  153. Slaughter G, Sunday J (2014) Fabrication of enzymatic glucose hydrogel biosensor based on hydrothermally grown ZnO nanoclusters. IEEE Sens J 14:1573–1576

    CAS  Google Scholar 

  154. Jang E, Park S, Park S, Lee Y, Kim D-N, Kim B, Koh W-G (2010) Fabrication of poly(ethylene glycol)-based hydrogels entrapping enzyme-immobilized silica nanoparticles. Polym Adv Technol 21:476–482

    CAS  Google Scholar 

  155. Zhu H, Srivastava R, Brown JQ, McShane MJ (2005) Combined physical and chemical immobilization of glucose oxidase in alginate microspheres improves stability of encapsulation and activity. Bioconjugate Chem 16:1451–1458

    CAS  Google Scholar 

  156. Brahim S, Narinesingh D, Guiseppi-Elie A (2002) Kinetics of glucose oxidase immobilized in p(HEMA)-hydrogel microspheres in a packed-bed bioreactor. J Mol Catal B: Enzym 18:69–80

    CAS  Google Scholar 

  157. Brahim S, Narinesingh D, Guiseppi-Elie A (2002) Bio-smart hydrogels: co-joined molecular recognition and signal transduction in biosensor fabrication and drug delivery. Biosens Bioelectron 17:973–981

    CAS  PubMed  Google Scholar 

  158. Jiménez C, Bartrol J, de Rooij NF, Koudelka-Hep M (1997) Use of photopolymerizable membranes based on polyacrylamide hydrogels for enzymatic microsensor construction. Anal Chim Acta 351:169–176

    Google Scholar 

  159. Muanruksa P, Dujjanutat P, Kaewkannetra P (2020) Entrapping immobilisation of lipase on biocomposite hydrogels toward for biodiesel production from waste frying acid oil. Catalysts 10:834

    CAS  Google Scholar 

  160. Jo S, Park S, Oh Y, Hong J, Kim HJ, Kim KJ, Oh KK, Lee SH (2019) Development of cellulose hydrogel microspheres for lipase immobilization. Biotechnol Bioprocess Eng 24:145–154

    CAS  Google Scholar 

  161. Grollmisch A, Kragl U, Großeheilmann J (2018) Enzyme immobilization in polymerized ionic liquids-based hydrogels for active and reusable biocatalysts. SynOpen 02:0192–0199

    CAS  Google Scholar 

  162. Chou C, Syu S, Chang J-H, Aimar P, Chang Y (2019) Bioinspired pseudozwitterionic hydrogels with bioactive enzyme immobilization via pH-responsive regulation. Langmuir 35:1909–1918

    CAS  PubMed  Google Scholar 

  163. Qian Y-C, Chen P-C, He G-J, Huang X-J, Xu Z-K (2014) Preparation of polyphosphazene hydrogels for enzyme immobilization. Molecules 19:9850–9863

    PubMed  PubMed Central  Google Scholar 

  164. Bai G, Zhou G, Li Y, Li T, Zhang X (2010) Synthesis of mesoporous silica templated by pluronic F68 and its application in the immobilization of lipase. J Porous Mater 17:755–761

    CAS  Google Scholar 

  165. Milašinović N, Milosavljević N, Filipović J, Knežević-Jugović Z, Krušić MK (2010) Synthesis, characterization and application of poly(N-isopropylacrylamide-co-itaconic acid) hydrogels as supports for lipase immobilization. React Funct Polym 70:807–814

    Google Scholar 

  166. Tümtürk H, Karaca N, Demirel G, Şahin F (2007) Preparation and application of poly(N, N-dimethylacrylamide-co-acrylamide) and poly(N-isopropylacrylamide-co-acrylamide)/κ-carrageenan hydrogels for immobilization of lipase. Int J Biol Macromol 40:281–285

    PubMed  Google Scholar 

  167. Alsarra IA, Neau SH, Howard MA (2004) Effects of preparative parameters on the properties of chitosan hydrogel beads containing Candida rugosa lipase. Biomaterials 25:2645–2655

    CAS  PubMed  Google Scholar 

  168. Basri M, Harun A, Ahmad MB, Razak CNA, Salleh AB (2001) Immobilization of lipase on poly(N-vinyl-2-pyrrolidone-co-styrene) hydrogel. J Appl Polym Sci 82:1404–1409

    CAS  Google Scholar 

  169. Veronese FM, Mammucari C, Schiavon F, Schiavon O, Lora S, Secundo F, Chilin A, Guiotto A (2001) Pegylated enzyme entrapped in poly(vinyl alcohol) hydrogel for biocatalytic application. Il Farmaco 56:541–547

    CAS  PubMed  Google Scholar 

  170. Wolf M, Tambourgi EB, Paulino AT (2021) Stability of β-d-galactosidase immobilized in polysaccharide-based hydrogels. Colloids Surf Physicochem Eng Aspects 609:125679

    CAS  Google Scholar 

  171. Facin BR, Moret B, Baretta D, Belfiore LA, Paulino AT (2015) Immobilization and controlled release of β-galactosidase from chitosan-grafted hydrogels. Food Chem 179:44–51

    CAS  PubMed  Google Scholar 

  172. Mariani AM, Natoli ME, Kofinas P (2013) Enzymatic activity preservation and protection through entrapment within degradable hydrogels. Biotechnol Bioeng 110:2994–3002

    CAS  PubMed  Google Scholar 

  173. Ariga O, Kato M, Sano T, Nakazawa Y, Sano Y (1993) Mechanical and kinetic properties of PVA hydrogel immobilizing β-galactosidase. J Ferment Bioeng 76:203–206

    CAS  Google Scholar 

  174. Bubanja IN, Bánsági T, Taylor AF (2018) Kinetics of the urea–urease clock reaction with urease immobilized in hydrogel beads. React Kinet Mech Catal 123:177–185

    CAS  Google Scholar 

  175. Bayramoglu G, Arica MY (2014) Activity and stability of urease entrapped in thermosensitive poly(N-isopropylacrylamide-co-poly(ethyleneglycol)-methacrylate) hydrogel. Bioprocess Biosystems Eng 37:235–243

    CAS  Google Scholar 

  176. Petrov P, Pavlova S, Tsvetanov CB, Topalova Y, Dimkov R (2011) In situ entrapment of urease in cryogels of poly(N-isopropylacrylamide): an effective strategy for noncovalent immobilization of enzymes. J Appl Polym Sci 122:1742–1748

    CAS  Google Scholar 

  177. di Luca M, Vittorio O, Cirillo G, Curcio M, Czuban M, Voli F, Farfalla A, Hampel S, Nicoletta FP, Iemma F (2018) Electro-responsive graphene oxide hydrogels for skin bandages: the outcome of gelatin and trypsin immobilization. Int J Pharm 546:50–60

    PubMed  Google Scholar 

  178. Gai L, Wu D (2009) A novel reversible pH-triggered release immobilized enzyme system. Appl Biochem Biotechnol 158:747–760

    CAS  PubMed  Google Scholar 

  179. Wang Y-J, Xu K-Z, Ma H, Liao X-R, Guo G, Tian F, Guan Z-B (2020) Recombinant horseradish peroxidase C1A immobilized on hydrogel matrix for dye decolorization and its mechanism on acid blue 129 decolorization. Appl Biochem Biotechnol 192:861–880

    CAS  PubMed  Google Scholar 

  180. Bilal M, Rasheed T, Zhao Y, Iqbal HMN (2019) Agarose-chitosan hydrogel-immobilized horseradish peroxidase with sustainable bio-catalytic and dye degradation properties. Int J Biol Macromol 124:742–749

    CAS  PubMed  Google Scholar 

  181. Ormategui N, Veloso A, Leal GP, Rodriguez-Couto S, Tomovska R (2015) Design of stable and powerful nanobiocatalysts, based on enzyme laccase immobilized on self-assembled 3D graphene/polymer composite hydrogels. ACS Appl Mater Interfaces 7:14104–14112

    CAS  PubMed  Google Scholar 

  182. Gassara-Chatti F, Brar SK, Ajila CM, Verma M, Tyagi RD, Valero JR (2013) Encapsulation of ligninolytic enzymes and its application in clarification of juice. Food Chem 137:18–24

    CAS  PubMed  Google Scholar 

  183. Wolf M, Belfiore LA, Tambourgi EB, Paulino AT (2019) Production of low-dosage lactose milk using lactase immobilised in hydrogel. Int Dairy J 92:77–83

    CAS  Google Scholar 

  184. Wang J, Miao X, Fengzhao Q, Ren C, Yang Z, Wang L (2013) Using a mild hydrogelation process to confer stable hybrid hydrogels for enzyme immobilization. Rsc Adv 3:16739–16746

    CAS  Google Scholar 

  185. Takahashi F, Sakai Y, Mizutani Y (1997) Immobilized enzyme reaction controlled by magnetic heating: γ-Fe2O3-loaded thermosensitive polymer gels consisting of N-isopropylacrylamide and acrylamide. J Ferment Bioeng 83:152–156

    CAS  Google Scholar 

  186. Uhlich T, Ulbricht M, Tomaschewski G (1996) Immobilization of enzymes in photochemically cross-linked polyvinyl alcohol. Enzyme Microb Technol 19:124–131

    CAS  Google Scholar 

  187. Manickam P, Vashist A, Madhu S, Sadasivam M, Sakthivel A, Kaushik A, Nair M (2020) Gold nanocubes embedded biocompatible hybrid hydrogels for electrochemical detection of H2O2. Bioelectrochemistry 131:107373

    CAS  PubMed  Google Scholar 

  188. Liao J, Huang H (2019) Green magnetic hydrogels synthesis, characterization and flavourzyme immobilization based on chitin from Hericium erinaceus residue and polyvinyl alcohol. Int J Biol Macromol 138:462–472

    CAS  PubMed  Google Scholar 

  189. Martín MC, López OV, Ciolino AE, Morata VI, Villar MA, Ninago MD (2019) Immobilization of enological pectinase in calcium alginate hydrogels: a potential biocatalyst for winemaking. Biocatal Agric Biotechnol 18:101091

    Google Scholar 

  190. Han Y, Yu S, Liu L, Zhao S, Yang T, Yang Y, Fang Y, Lv S (2018) Silk fibroin-based hydrogels as a protective matrix for stabilization of enzymes against pH denaturation. Mol Catal 457:24–32

    CAS  Google Scholar 

  191. Leca-Bouvier BD, Sassolas A, Blum LJ (2014) Polyluminol/hydrogel composites as new electrochemiluminescent-active sensing layers. Anal Bioanal Chem 406:5657–5667

    CAS  PubMed  Google Scholar 

  192. Yi Y, Kermasha S, L’Hocine L, Neufeld R (2002) Encapsulation of chlorophyllase in hydrophobically modified hydrogel. J Mol Catal B Enzym 19–20:319–325

    Google Scholar 

  193. Dumitriu S, Magny P, Montané D, Vidal PF, Chornet E (1994) Polyionic hydrogels obtained by complexation between xanthan and chitosan: their properties as supports for enzyme immobilization. J Bioact Compatible Polym 9:184–209

    CAS  Google Scholar 

  194. Dong LC, Hoffman AS (1986) Thermally reversible hydrogels: III. immobilization of enzymes for feedback reaction control. J Controll Release 4:223–227

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Mogharabi-Manzari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehipour, M., Rezaei, S., Yazdani, M. et al. Recent advances in preparation of polymer hydrogel composites and their applications in enzyme immobilization. Polym. Bull. 80, 5861–5896 (2023). https://doi.org/10.1007/s00289-022-04370-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04370-4

Keywords

Navigation