Skip to main content

Advertisement

Log in

Multi-component elastomeric composites based on castor oil/AgI/KI for cloud seeding: processing and modeling of reagent efficiency

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This study involves the development of sustainable technology/methodology for the production, characterization and numerical calculation of highly effective multi-component anti-hail seeding reagents (seeding composites) based on silver iodide and iodide of an alkali metal, homogenized in synthetic or bio polyurethane binder. Polyurethane-based seeding composites are produced via casting method and the results of uniaxial tensile tests, hardness and dynamic-mechanical analysis show that applied technique is more suitable compared to the conventional dry homogenization of the seeding active agents. Lower viscosity, uniform powdered seeding agents distribution and improved mechanical properties, e.g. higher tensile strength (5.05 MPa) and Shore A hardness (89 ShA) are achieved using castor oil as bio-polymer binder, compared to the synthetic polymer hydroxyl terminated poly(butadiene). In addition, significantly higher glass transition temperature obtained for seeding composite with castor oil as polymer binder indicating higher density and branched polymer network. Numerical models of the convective clouds are used to determine composition and mass of seeding agent which gives the best results concerning hail suppression or rain intensification. Results show that composite seeding reagents which contain silver iodide and potassium iodide in a molar ratio of 1:2 upon combustion generate freezing nuclei which are active above 0 °C, providing the most effective cloud seeding with 10.53% hail accumulations suppression.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mijatovic M (2016) Why Doesn’ T hail protection in Serbia work?

  2. Kovačević N (2019) Hail suppression effectiveness for varying solubility of natural aerosols in water. Meteorol Atmos Phys 131:585–599. https://doi.org/10.1007/s00703-018-0587-4

    Article  Google Scholar 

  3. Abshaev MT, Sulakvelidze GK, Burtsev II, Fedchenko LM, Jekamukhov MK, Abshaev AM, Kuznetsov BK, Malkarova AM, Tebuev AD, Nesmeyanov PA, Shakirov IN, Shevela GF (2006) Development of rocket and artillery technology for hail suppression M.T. In: Bojkov RD (ed) Achievements in weather modification. Department of Atmospheric Studies, Abu Dhabi, UAE, pp 117–139

    Google Scholar 

  4. Mesinger F, Mesinger N (1992) Has hail suppression in Eastern Yugoslavia led to a reduction in the frequency of hail? J Appl Meteorol 31:104–111

    Article  Google Scholar 

  5. Kumar, P., Jayakumar, D., Pawar, S.: Anti-Hail Rocket (OLASTRA A-1) with Ejectable Pyrotechnique Cartridges. 3: 143–152

  6. Kovačević N, Veljovic K (2018) Impact of drizzle-sized cloud particles on production of precipitation in hailstorms: a sensitivity study. Atmosphere (Basel). https://doi.org/10.3390/atmos9010013

    Article  Google Scholar 

  7. Mentus S (1994) Method and composition for precipitation of atmosfpheric water

  8. Burkardt LA, Finnegan WG, Odencrantz FK, St Amand P, Stanifer CD (1971) Method of controlling weather, https://patents.google.com/patent/US3915379A/en?oq=US3915379A

  9. Fajardo C, Costa G, Ortiz LT, Nande M, Rodríguez-Membibre ML, Martín M, Sánchez-Fortún S (2016) Potential risk of acute toxicity induced by AgI cloud seeding on soil and freshwater biota. Ecotoxicol Environ Saf 133:433–441. https://doi.org/10.1016/j.ecoenv.2016.06.028

    Article  CAS  Google Scholar 

  10. Meshalkin VP, Belyakov AV (2020) Methods used for the compaction and molding of ceramic matrix composites reinforced with carbon nanotubes. Processes 8:1–37. https://doi.org/10.3390/PR8081004

    Article  Google Scholar 

  11. Rodić V, Dimić M, Brzić S, Gligorijević N (2016) Cast composite solid propellants with different combustion stabilizers. Sci Tech Rev 65:3–10. https://doi.org/10.5937/str1502003r

    Article  Google Scholar 

  12. Raghu AV, Gadaginamath GS, Mathew NT, Halligudi SB, Aminabhavi TM (2007) Synthesis and characterization of novel polyurethanes based on 4,4′-[1,4-phenylenedi-diazene-2,1-diyl]bis(2-carboxyphenol) and 4,4′-[1,4-phenylenedi-diazene-2,1-diyl]bis(2-chlorophenol) hard segments. React Funct Polym 67:503–514. https://doi.org/10.1016/j.reactfunctpolym.2007.02.003

    Article  CAS  Google Scholar 

  13. Raghu AV, Gadaginamath GS, Jawalkar SS, Halligudi SB, Aminabhavi TM (2006) Synthesis, characterization, and molecular modeling studies of novel polyurethanes based on 2,20-[ethane-1,2-diylbis(nitrilomethylylidene)]diphenol and 2,20-[hexane-1,6-diylbis(nitrilomethylylidene)] diphenol hard segments. J Polym Sci Part A Polym Chem 44:6032–6046. https://doi.org/10.1002/pola.21686

    Article  CAS  Google Scholar 

  14. Kim KT, Dao TD, Jeong HM, Anjanapura RV, Aminabhavi TM (2015) Graphene coated with alumina and its utilization as a thermal conductivity enhancer for alumina sphere/thermoplastic polyurethane composite. Mater Chem Phys 153:291–300. https://doi.org/10.1016/j.matchemphys.2015.01.016

    Article  CAS  Google Scholar 

  15. Raghu AV, Lee YR, Jeong HM, Shin CM (2008) Preparation and physical properties of waterborne polyurethane/ functionalized graphene sheet nanocomposites. Macromol Chem Phys 209:2487–2493. https://doi.org/10.1002/macp.200800395

    Article  CAS  Google Scholar 

  16. McClain MS, Gunduz IE, Son SF (2019) Additive manufacturing of ammonium perchlorate composite propellant with high solids loadings. Proc Combust Inst 37:3135–3142. https://doi.org/10.1016/j.proci.2018.05.052

    Article  CAS  Google Scholar 

  17. Rusmirović JD, Rančić MP, Pavlović VB, Rakić VM, Stevanović S, Djonlagić J, Marinković AD (2018) Cross-linkable modified nanocellulose/polyester resin-based composites: effect of unsaturated fatty acid nanocellulose modification on material performances. Macromol Mater Eng 303:1700648. https://doi.org/10.1002/mame.201700648

    Article  CAS  Google Scholar 

  18. Williams GI, Wool RP (2000) Composites from natural fibers and soy oil resins. Appl Compos Mater 7:421–432. https://doi.org/10.1023/A:1026583404899

    Article  CAS  Google Scholar 

  19. Li M, Xia J, Mao W, Yang X, Xu L, Huang K, Li S (2017) Preparation and properties of castor oil-based dual cross-linked polymer networks with polyurethane and polyoxazolidinone structures. ACS Sustain Chem Eng 5:6883–6893. https://doi.org/10.1021/acssuschemeng.7b01103

    Article  CAS  Google Scholar 

  20. Tran NB, Pham QT (1997) Castor oil-based polyurethanes: 2. Tridimensional polyaddition in bulk between castor oil and diisocyanates - Gelation and determination of Fw(OH). Polymer (Guildf) 38:3307–3314. https://doi.org/10.1016/S0032-3861(96)00890-7

    Article  Google Scholar 

  21. Seyidoglu T, Bohn MA (2015) Modelling of loss factor curves obtained by torsion-DMA of HTPB and GAP based binders manufactured with different curing agents and plasticizers. pp. 1–26

  22. ASTM International (2014) Standard test method for tensile properties of plastics. ASTM Int. 1–17. Doi: https://doi.org/10.1520/D0638-14.1

  23. Hsie E-Y, Farley RD, Orville HD (1980) Numerical simulation of ice-phase convective cloud seeding. J Appl Meteorol 19:950–977

    Article  Google Scholar 

  24. Cooper WA (1974) A possible mechanism for contact nucleation. J Atmos Sci 31:1832–1837

    Article  Google Scholar 

  25. Dey A, Kumar A, Sikder AK, Gupta M (2015) Chemically collapsible mandrel for solid rocket motor processing. J Aerosp Technol Manag 7:277–284. https://doi.org/10.5028/jatm.v7i3.494

    Article  CAS  Google Scholar 

  26. Potassium Iodide (KI), https://www.cdc.gov/nceh/radiation/emergencies/ki.htm

  27. Clemitson IR, Clemitson IR (2008) Castable polyurethane elastomers. CRC Press, London

    Book  Google Scholar 

  28. Kojio K, Nakashima S, Furukawa M (2007) Microphase-separated structure and mechanical properties of norbornane diisocyanate-based polyurethanes. Polymer (Guildf) 48:997–1004. https://doi.org/10.1016/j.polymer.2006.12.057

    Article  CAS  Google Scholar 

  29. Wong CS, Badri KH (2012) Chemical analyses of palm kernel oil-based polyurethane prepolymer. Mater Sci Appl 03:78–86. https://doi.org/10.4236/msa.2012.32012

    Article  CAS  Google Scholar 

  30. Kalusuraman G, Siva I, Munde Y, Selvan CP, Kumar SA, Amico SC (2020) Dynamic-mechanical properties as a function of luffa fibre content and adhesion in a polyester composite. Polym Test 87:106538. https://doi.org/10.1016/j.polymertesting.2020.106538

    Article  CAS  Google Scholar 

  31. Ornaghi HL, Bolner AS, Fiorio R, Zattera AJ, Amico SC (2010) Mechanical and dynamic mechanical analysis of hybrid composites molded by resin transfer molding. J Appl Polym Sci. https://doi.org/10.1002/app.32388

    Article  Google Scholar 

  32. Hameed N, Sreekumar PA, Francis B, Yang W, Thomas S (2007) Morphology, dynamic mechanical and thermal studies on poly(styrene-co-acrylonitrile) modified epoxy resin/glass fibre composites. Compos Part A Appl Sci Manuf 38:2422–2432. https://doi.org/10.1016/j.compositesa.2007.08.009

    Article  CAS  Google Scholar 

  33. Romanzini D, Lavoratti A, Ornaghi HL, Amico SC, Zattera AJ (2013) Influence of fiber content on the mechanical and dynamic mechanical properties of glass/ramie polymer composites. Mater Des 47:9–15. https://doi.org/10.1016/j.matdes.2012.12.029

    Article  CAS  Google Scholar 

  34. Lavoratti A, Scienza LC, Zattera AJ (2016) Dynamic-mechanical and thermomechanical properties of cellulose nanofiber/polyester resin composites. Carbohydr Polym 136:955–963. https://doi.org/10.1016/j.carbpol.2015.10.008

    Article  CAS  PubMed  Google Scholar 

  35. Kovačević T, Rusmirović J, Tomić N, Marinović-Cincović M, Kamberović Ž, Tomić M, Marinković A (2017) New composites based on waste PET and non-metallic fraction from waste printed circuit boards: mechanical and thermal properties. Compos Part B Eng 127:1–14. https://doi.org/10.1016/j.compositesb.2017.06.020

    Article  CAS  Google Scholar 

  36. Drah A, Rusmirovic J, Kovačević T, Tomić N, Bogosavljavic M, Marinkovic A (2019) Effect of surface activation of alumina particles on the performances of thermosetting-based composite materials. J Compos Mater. https://doi.org/10.1177/0021998319839133

    Article  Google Scholar 

  37. Brzić S, Dimić M, Jelisavac L, Djonlagić J, Ušćumlić G, Bogdanov J (2015) Influence of polyglycidyl-type bonding agents on the viscoelastic properties of a carboxylterminated poly(butadiene-co-acrylonitrile)-based composite rocket propellant. Cent Eur J Energ Mater 12:307–321

    Google Scholar 

  38. Cerri S, Bohn MA, Menke K, Galfetti L (2013) Aging of HTPB/Al/AP rocket propellant formulations investigated by DMA measurements. Propellants Explos Pyrotech 38:190–198. https://doi.org/10.1002/prep.201200186

    Article  CAS  Google Scholar 

  39. Brzic S, Jelisavac L, Galovic J, Simic D, Petkovic J (2014) Viscoelastic properties of hydroxyl-terminated poly(butadiene) based composite rocket propellants. Hem Ind 68:435–443. https://doi.org/10.2298/HEMIND130426067B

    Article  Google Scholar 

  40. Kovačević T, Rusmirović J, Tomić N, Mladenović G, Milošević M, Mitrović N, Marinković A (2019) Effects of oxidized/treated non-metallic fillers obtained from waste printed circuit boards on mechanical properties and shrinkage of unsaturated polyester-based composites. Polym Compos 40:1170–1186. https://doi.org/10.1002/pc.24827

    Article  CAS  Google Scholar 

  41. Feng Y, Liang H, Yang Z, Yuan T, Luo Y, Li P, Yang Z, Zhang C (2017) A solvent-free and scalable method to prepare soybean-oil-based polyols by thiol-ene photo-click reaction and biobased polyurethanes therefrom. ACS Sustain Chem Eng 5:7365–7373. https://doi.org/10.1021/acssuschemeng.7b01672

    Article  CAS  Google Scholar 

  42. Jia R, Wang D, Huang Z, Liu X, Zhao C, Hui Z, Xu X, He X (2020) Synthesis of castor oil-based waterborne polyurethane with improved properties via adjusting PBA/CO soft segment ratio. ChemistrySelect 5:12690–12696. https://doi.org/10.1002/slct.202003710

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Ministry of Education, Science and Technological Development of the Republic of Serbia for the financial support provided, as part of the projects: Contract No. 451-03-68/2022-14/200325 and 176013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelena Gržetić.

Ethics declarations

Data availability statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brzić, S., Kovačević, N., Gržetić, J. et al. Multi-component elastomeric composites based on castor oil/AgI/KI for cloud seeding: processing and modeling of reagent efficiency. Polym. Bull. 80, 4535–4553 (2023). https://doi.org/10.1007/s00289-022-04278-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04278-z

Keywords

Navigation