Skip to main content
Log in

Relationship between production condition, microstructure and final properties of chitosan/graphene oxide–zinc oxide bionanocomposite

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Herein, chitosan–graphene oxide–zinc oxide nanocomposites were produced using two different methods (in situ preparation using single step and solution mixing) at different loading level and the effect of production process and filler content on the chemical structure, morphology, mechanical, dynamic mechanical and thermal stability were studied by FTIR, SEM, XRD, tensile, DMTA and TGA analysis. FTIR results showed that chitosan extracted from chitin and ZnO formed during single step in-site fabrication method simultaneously. Morphological study and tensile test demonstrated that the well dispersion of filler in the chitosan during single step preparation as a result of interfacial interaction between functionalized groups of GO and chitosan lead to enhancement of tensile properties in the range of 39% for tensile strength and 71% improvement for Young's modulus at 1 w/w% of filler content. DMTA analysis shows that storage modulus of chitosan nanocomposites significantly enhanced as a result of homogenous dispersed GO and the strong interfacial attraction. TGA analysis confirmed that thermal stability of the chitosan–GO–ZnO prepared via single step is higher due to the better dispersion of GO–ZnO in the chitosan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Muzzarelli RAA, Boudrant J, Meyer D, Manno N, De Marchis M, Paoletti MG (2012) Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: a tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial. Carbohyd Polym A 87:995–1012

    CAS  Google Scholar 

  2. Karimi M, Alibak AH, Alizadeh SMS, Sharif M, Vaferi B (2022) Intelligent modeling for considering the effect of bio-source type and appearance shape on the biomass heat capacity. Measurement 189:110529

    Google Scholar 

  3. Moghadas B, Solouk A, Sadeghi D (2021) Development of chitosan membrane using non-toxic crosslinkers for potential wound dressing applications. Polym Bull 78:4919–4929

    CAS  Google Scholar 

  4. Caroni JG, de Almeida Mattos AV, Fernandes KR et al (2021) Chitosan-based glycerol-plasticized membranes: bactericidal and fibroblast cellular growth properties. Polym Bull 78:4297–4312

    CAS  Google Scholar 

  5. Nikfarjam M, Kokabi M (2021) Chitosan/laponite nanocomposite nanogels as a potential drug delivery system. Polym Bull 78:4593–4607

    CAS  Google Scholar 

  6. Xu D, Chen T, Liu Y (2021) The physical properties, antioxidant and antimicrobial activity of chitosan–gelatin edible films incorporated with the extract from hop plant. Polym Bull 78:3607–3624

    CAS  Google Scholar 

  7. Taghizadeh MT, Siyahi V, Ashassi-Sorkhabi H (2021) Visible-light photocatalytic degradation of textile dye by recyclable and recoverable AgBr–ZnO/chitosan beads. Polym Bull 78:3869–3887

    CAS  Google Scholar 

  8. Rahmani Z, Ghaemy M, Olad A (2021) Preparation of nanogels based on kappa-carrageenan/chitosan and N-doped carbon dots: study of drug delivery behavior. Polym Bull 78:2709–2726

    CAS  Google Scholar 

  9. Fernandes SCM, Freire CSR, Silvestre AJD, Pascoal Neto C, Gandini A, Berglund LA, Salmen L (2010) Transparent chitosan films reinforced with a high content of nanofibrillated cellulose. Carbohyd Polym 81:394–401

    CAS  Google Scholar 

  10. Muzzarelli RAA, Greco F, Busilacchi A, Sollazzo V, Gigante A (2012) Chitosan, hyaluronan and chondroitin sulfate in tissue engineering for cartilage regeneration: a review. Carbohyd Polym B 89:723–739

    CAS  Google Scholar 

  11. Hu Y, Yang G, Zhou J, Li H, Shi L, Xu X, Zhuang X (2022) Proton donor-regulated mechanically robust aramid nanofiber aerogel membranes for high-temperature thermal insulation. ACS Nano. https://doi.org/10.1021/acsnano.1c11301

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rahman N, Hanifah S, Mobarak N, Ahmad A, Ludin N, Bella F, Su’ait M (2021) Chitosan as a paradigm for biopolymer electrolytes in solid-state dye-sensitised solar cells. Polymer 230:124092

    CAS  Google Scholar 

  13. Amici J, Torchio C, Versaci D, Dessantis D, Marchisio A, Caldera F, Bella F, Francia C, Bodoardo S (2021) Nanosponge-based composite gel polymer electrolyte for safer Li-O2 batteries. Polymers 13(10):1625

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Haro J, Tatsi E, Fagiolari L, Bonomo M, Barolo C, Turri S, Bella F, Griffin G (2021) Lignin-based polymer electrolyte membranes for sustainable aqueous dye-sensitized solar cells. ACS Sustain Chem Eng 9(25):8550–8560

    PubMed  PubMed Central  Google Scholar 

  15. Fagiolari L, Bonomo M, Cognetti A, Meligrana G, Gerbaldi C, Barolo C, Bella F (2020) Photoanodes for aqueous solar cells: exploring additives and formulations starting from a commercial TiO2 paste. Chem Eng J 382:122984

    Google Scholar 

  16. Buraidah M, Teo L, Yong C, Shah S, Arof A (2016) Performance of polymer electrolyte based on chitosan blended with poly(ethylene oxide) for plasmonic dyesensitized solar cell. Opt Mater 57:202–211

    CAS  Google Scholar 

  17. Singh P, Bhattacharya P, Nagarale R, Kim K, Rhee H (2010) Synthesis, characterization and application of biopolymer-ionic liquid composite membranes. Synth Met 160:139–142

    CAS  Google Scholar 

  18. Khalili M, Abedi M, Amoli H, Mozaffari S (2017) Comparison of chitosan and chitosan nanoparticles on the performance and charge recombination of waterbased gel electrolyte in dye sensitized solar cells. Carbohydr Polym 175:1–6

    CAS  PubMed  Google Scholar 

  19. Yusuf SNF, Aziz MF, Hassan HC, Bandara TMWJ, Mellander BE, Careem MA, Arof AK (2014) Phthaloylchitosan-based gel polymer electrolytes for efficient dye-sensitized solar cells. J Chem. https://doi.org/10.1155/2014/783023

    Article  Google Scholar 

  20. Yusuf SNF, Azzahari AD, Selvanathan V, Yahya R, Careem MA, Arof AK (2017) Improvement of N-phthaloylchitosan based gel polymer electrolyte in dyesensitized solar cells using a binary salt system. Carbohydr Polym 157:938–944

    CAS  PubMed  Google Scholar 

  21. Muhammad FH, Winie T (2020) Influence of 1-methyl-3-propylimidazolium iodide ionic liquid on the performance of dye-sensitized solar cell using hexanoyl chitosan/poly(vinyl chloride) based polymer electrolyte. Optik 208:164558

    CAS  Google Scholar 

  22. Sudheesh Kumar P, Lakshmanan V-K, Anilkumar T, Ramya C, Reshmi P, Unnikrishnan A et al (2012) Flexible and microporous chitosan hydrogel/Nano ZnO composite bandages for wound dressing: in vitro and in vivo evaluation. ACS Appl Mater Interfaces 4:2618–2629

    CAS  Google Scholar 

  23. Fernandes SCM, Freire CSR, Silvestre AJD, Neto CP, Gandini A, Berglund LA, Salmén L (2010) Transparent chitosan films reinforced with a high content of nanofibrillated cellulose. Carbohydr Polym 81:394–401

    CAS  Google Scholar 

  24. Ifuku S, Ikuta A, Egusa M, Kaminaka H, Izawa H, Morimoto M, Saimoto H (2013) Preparation of high-strength transparent chitosan film reinforced with surface-deacetylated chitin nanofibers. Carbohydr Polym 98:1198–1202

    CAS  PubMed  Google Scholar 

  25. Tang X, Wu J, Wu W, Zhang Z, Zhang W, Zhang Q, Li P (2020) Competitive-type pressure-dependent immunosensor for highly sensitive detection of diacetoxyscirpenol in wheat via monoclonal antibody. Anal Chem (Washington) 92(5):3563–3571. https://doi.org/10.1021/acs.analchem.9b03933

    Article  CAS  Google Scholar 

  26. Ji HK, Kim SI, Kwon IB, Mi HK, Jin IL (2013) Simple fabrication of silver hybridized porous chitosan-based patch for transdermal drug-delivery system. Mater Lett 95:48–51

    Google Scholar 

  27. Hu X, Zhang P, Wang D, Jiang J, Chen X, Liu Y, Li P (2021) AIEgens enabled ultrasensitive point-of-care test for multiple targets of food safety: aflatoxin B 1 and cyclopiazonic acid as an example. Biosens Bioelectron 182:113188

    CAS  PubMed  Google Scholar 

  28. He Y, Yang S, Liu H, Shao Q, Chen Q, Lu C, Jiang Y, Liu C, Guo Z (2018) Reinforced carbon fiber laminates with oriented carbon nanotube epoxy nanocomposites: magnetic field assisted alignment and cryogenic temperature mechanical properties. J Colloid Interf Sci 517:40–51

    CAS  Google Scholar 

  29. Darder M, Colilla M, Ruiz-Hitzky E (2003) Biopolymer−clay nanocomposites based on chitosan intercalated in montmorillonite. Chem Mater 15:3774–3780

    CAS  Google Scholar 

  30. Cai X, Tong H, Shen XY, Chen WX, Yan J, Hu JM (2009) Preparation and characterization of homogeneous chitosan–polylactic acid/hydroxyapatite nanocomposite for bone tissue engineering and evaluation of its mechanical properties. Acta Biomater 5:2693–2703

    CAS  PubMed  Google Scholar 

  31. Lee JH, Marroquin J, Rhee KY, Park SJ, Hui D (2013) Cryomilling application of graphene to improve material properties of graphene/chitosan nanocomposites. Compos Part B 45:682–687

    CAS  Google Scholar 

  32. Abdolmohammadi S, Yunus WMZW, Rahman MZAB, Ibrahim NA (2011) Effect of organoclay on mechanical and thermal properties of polycaprolactone/chitosan/montmorillonite nanocomposites. J Reinf Plast Compos 12:1045–1054

    Google Scholar 

  33. Nikpour MR, Rabiee SM, Jahanshahi M (2012) Synthesis and characterization of hydroxyapatite/chitosan nanocomposite materials for medical engineering applications. Compos B Eng 43:1881–1886

    CAS  Google Scholar 

  34. Amani M, Sharif M, Kashkooli A, Rahnama N, Fazli A (2015) Enhancement of tensile, electrical and thermal properties of epoxy nanocomposites through chemical hybridization of polypyrrole and graphene oxide. RSC Adv 5:77723–77732

    CAS  Google Scholar 

  35. Khezri T, Sharif M, Pourabas B (2016) RSC Adv 6:93680

    CAS  Google Scholar 

  36. Obireddy SR, Lai W (2021) Multi-component hydrogel beads incorporated with reduced graphene oxide for pH-responsive and controlled co-delivery of multiple agents. Pharmaceutics 13(3):313. https://doi.org/10.3390/pharmaceutics13030313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sharif M, Pourabbas B, Sangermano M, Sadeghi Moghadam F, Mohammadi M, Roppolo FA (2017) The effect of graphene oxide on UV curingkinetics and properties of SU8 nanocomposites. Polym Int 66:405–417

    CAS  Google Scholar 

  38. Zare M, Sharif M, Kashkooli A (2014) Study on the effect of polypyrrole and polypyrrole/graphene oxide nanoparticles on the microstructure, electrical and tensile properties of polypropylene nanocomposites. Polym Plast Technol Eng 53:1392

    CAS  Google Scholar 

  39. Lai W, Wong W (2021) Use of graphene-based materials as carriers of bioactive agents. Asian J Pharm Sci 16(5):577–588. https://doi.org/10.1016/j.ajps.2020.11.004

    Article  PubMed  Google Scholar 

  40. Zhang X, Tang Y, Zhang F, Lee C (2016) A novel aluminum-graphite dual-ion battery. Adv Energy Mater 6(11):1502588. https://doi.org/10.1002/aenm.201502588

    Article  CAS  Google Scholar 

  41. Zhang H, Cao D, Jiang Z, Yu H, Shi A, Bai X (2022) Trunk-Leaf Vein, structure inspired synthesis of mesoporous Carbon@Nickel oxide/nickel ternary composite for sustainable supercapacitor electrode. Appl Surf Sci 571:151324

    CAS  Google Scholar 

  42. Han D, Yan L, Chen W, Li W (2011) Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet state. Carbohydr Polym 83:653–658

    CAS  Google Scholar 

  43. Yang X, Tu Y, Li L, Shang S, Tao X-M (2010) Well-dispersed chitosan/graphene oxide nanocomposites. ACS Appl Mater Interfaces 2:1707–1713

    CAS  PubMed  Google Scholar 

  44. Navalon S, Dhakshinamoorthy A, Alvaro M, Garcia H (2014) Carbocatalysis by graphene-based materials. Chem Rev 114:6179

    CAS  PubMed  Google Scholar 

  45. Qian R, Yu J, Wu C, Zhai X, Jiang P (2013) Alumina-coated graphene sheet hybrids for electrically insulating polymer composites with high thermal conductivity. RSC Adv 3:17373

    CAS  Google Scholar 

  46. He F, Fan J, Ma D, Zhang L, Leung C, Chan HL (2014) The attachment of Fe3O4 nanoparticles to graphene oxide by covalent bonding. Carbon 48:3139

    Google Scholar 

  47. Yusoff N, Huang NM, Muhamad MR, Kumar SV, Lim HN, Harrison I (2013) Hydrothermal synthesis of CuO/functionalized graphene nanocomposites for dye degradation. Mater Lett 93:393

    CAS  Google Scholar 

  48. Bakhshandeh E, Jannesari A, Ranjbar Z, Sobhani S, Saeb MR (2014) Anti-corrosion hybrid coatings based on epoxy–silica nano-composites: toward relationship between the morphology and EIS data. Prog Org Coat 77:1169

    CAS  Google Scholar 

  49. Bai B, Jiang S, Liu L, Li X, Wu H (2021) The transport of silica powders and lead ions under unsteady flow and variable injection concentrations. Powder Technol 387:22–30. https://doi.org/10.1016/j.powtec.2021.04.014

    Article  CAS  Google Scholar 

  50. Petchthanasombat C, Tiensing T, Sunintaboon P (2012) Synthesis of zinc oxide-encapsulated poly (methyl methacrylate)–chitosan core–shell hybrid particles and their electrochemical property. J Colloid Interface Sci 369:52

    CAS  PubMed  Google Scholar 

  51. Lei Z, Yang J, Weiwei X, Hao S, Zhang L, Qiang S, Shuangyan S (2022) Application and removal mechanism of ZnO/bentonite desulfurizer in the dry desulfurization. Appl Phys A Mater Sci Process. https://doi.org/10.1007/s00339-021-05221-1

    Article  Google Scholar 

  52. Anandhavelu S, Thambidurai S (2011) Preparation of chitosan–zinc oxide complex during chitin deacetylation. Carbohydr Polym 83:1565–1569

    CAS  Google Scholar 

  53. Wang Y, Zhang Q, Zhang C, Li P (2012) Characterisation and cooperative antimicrobial properties of chitosan/nano-ZnO composite nanofibrous membranes. Food Chem 132:419–427

    CAS  PubMed  Google Scholar 

  54. Rahman PM, Mujeeb VMA, Muraleedharan K, Thomas SK (2018) Chitosan/nano ZnO composite films: enhanced mechanical, antimicrobial and dielectric properties. Arab J Chem 11:120–127

    Google Scholar 

  55. Anandhavelu S, Thambidurai S (2013) Single step synthesis of chitin/chitosan-based graphene oxide–ZnO hybrid composites for better electrical conductivity and optical properties. Electrochim Acta 90:194–202

    CAS  Google Scholar 

  56. Kumari S, Rath P, Kumar ASH, Tiwari TN (2015) Extraction and characterization of chitin and chitosan from fishery waste by chemical method. Environ Technol Innov 3:77–85

    Google Scholar 

  57. Shoubin X, Long J, Haigang Y, Yuanqing S, Yi D (2011) Structure and photocatalytic activity of polythiophene/TiO2 composite particles prepared by photoinduced polymerization. Chin J Catal 32:536–545

    Google Scholar 

  58. Senthilkumar B, Thenamirtham P, Selvan RK (2011) Structural and electrochemical properties of polythiophene. Appl Surf Sci 257:9063–9067

    CAS  Google Scholar 

  59. Kong F, Wang Y, Zhang J, Xia H, Zhu B, Wang Y, Wang S, Wu S (2008) The preparation and gas sensitivity study of polythiophene/SnO2 composites. Mater Sci Eng B 150:6–11

    CAS  Google Scholar 

  60. Wang S, Tambraparni M, Qiu J, Tipton J, Dean D (2009) Thermal expansion of graphene composites. Macromolecules 42:5251

    CAS  Google Scholar 

  61. Moghaddam AB, Nazari T, Badraghi J, Kazemzad M (2009) Synthesis of ZnO nanoparticles and electrodeposition of polypyrrole/ZnO nanocomposite film. Int J Electrochem Sci 4(2):247–257

    CAS  Google Scholar 

  62. Al-Sagheer FA, Al-Sughayer MA, Muslim S, Elsabee MZ (2009) Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohyd Polym 77:410

    CAS  Google Scholar 

  63. Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA (2006) Graphene-based composite materials. Nature 442:282

    CAS  PubMed  Google Scholar 

  64. Wang T, Zhang S, Mao C, Song J, Niu H, Jin B (2012) Enhanced electrochemiluminescence of CdSe quantum dots composited with graphene oxide and chitosan for sensitive sensor. Biosens Bioelectron 31:369

    CAS  PubMed  Google Scholar 

  65. Han D, Yan L, Chen W, Li W (2011) Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet state. Carbohyd Polym 83:653–658

    CAS  Google Scholar 

  66. Liu W, Guo Z, Wang C, Niu S (2021) Physico-mechanical and microstructure properties of cemented coal Gangue-Fly ash backfill: effects of curing temperature. Constr Build Mater 299:124011. https://doi.org/10.1016/j.conbuildmat.2021.124011

    Article  CAS  Google Scholar 

  67. Bai B, Nie Q, Wu H, Hou J (2021) The attachment-detachment mechanism of ionic/nanoscale/microscale substances on quartz sand in water. Powder Technol 394:1158–1168. https://doi.org/10.1016/j.powtec.2021.09.051

    Article  CAS  Google Scholar 

  68. Moosaei R, Sharif M, Ramezannezhad A (2017) Enhancement of tensile, electrical and thermal properties of epoxy nanocomposites through chemical hybridization of polypyrrole and graphene oxide. Polym Test 60:173

    CAS  Google Scholar 

  69. Zhao X, Zhang Q, Chen D, Lu P (2010) Enhanced mechanical properties of graphene-based poly (vinyl alcohol) composites. Macromolecules 43:2357–2363

    CAS  Google Scholar 

  70. Corazzari I, Nisticò R, Turci F, Faga MG, Franzoso F, Tabasso S et al (2015) Advanced physico-chemical characterization of chitosan by means of TGA coupled on-line with FTIR and GCMS: thermal degradation and water adsorption capacity. Polym Degrad Stab 112:1–9. https://doi.org/10.1016/j.polymdegradstab.2014.12.006

    Article  CAS  Google Scholar 

  71. Ziegler-Borowska M, Chełminiak D, Kaczmarek H (2014) Thermal stability of magnetic nanoparticles coated by blends of modified chitosan and poly (quaternary ammonium) salt. J Therm Anal Calorim 119:499–506. https://doi.org/10.1007/s10973-014-4122-7

    Article  CAS  Google Scholar 

  72. Zhou T, Zhao Y, Rao Z (2022) Fundamental and estimation of thermal contact resistance between polymer matrix composites: a review. Int J Heat Mass Transf. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122701

    Article  Google Scholar 

  73. Wu H, Zhang F, Zhang Z, Hou L (2022) Atomization and droplet dynamics of a gas-liquid two-phase jet under different mass loading ratios. Int J Multiphase Flow 15:104043. https://doi.org/10.1016/j.ijmultiphaseflow.2022.104043

    Article  CAS  Google Scholar 

  74. Zhao Y (2022) Stability of phase boundary between L12-Ni3Al phases: a phase field study. Intermetallics. https://doi.org/10.1016/j.intermet.2022.107528

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Sharif.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azimi, N., Gandomkar, A. & Sharif, M. Relationship between production condition, microstructure and final properties of chitosan/graphene oxide–zinc oxide bionanocomposite. Polym. Bull. 80, 6455–6469 (2023). https://doi.org/10.1007/s00289-022-04277-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04277-0

Keywords

Navigation