Skip to main content

Advertisement

Log in

Optical, structural and morphological properties of synthesized PANI-CSA-PEO-based GaN nanocomposite films for optoelectronic applications

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Nanocomposite films of polyaniline protonated with camphor sulfonic acid (PANI-CSA) hosted in polyethylene oxide (PEO) and incorporated with gallium nitride nanoparticles (GaN-NPs) were synthesized and characterized. Nanocomposite films were coated on activated fused silica substrates by employing the spin coating technique. Films of PANI-CSA, PEO, PANI-CSA-PEO, and PANI-CSA-PEO incorporated with GaN-NPs with a weight percent ratio of 10%, 20.07%, 38.76%, 77.83%, 93.03%, 100.78%, and 155.04% with respect to PANI-CSA were characterized using UV–Vis spectroscopy, XRD, and SEM. Refractive index (n), extinction coefficient (k), absorption coefficient (α), and bandgap energies (Eg) were deduced. The refractive index value of PANI-CSA-PEO at 550 nm is found to be 1.72. It increases to 1.82 when GaN-NPs have been added to PANI-CSA-PEO solution by 10 wt.%. Then, it decreased to 1.63 when GaN-NPs concentration was increased to 20.07 wt.%. When GaN-NPs is increased further to higher concentrations, the material becomes GaN-rich PANI-CSA-PEO, and the refractive index takes values ranging between 1.56 and 1.66 at the higher concentration. The typical crystalline structure of PANI-CSA was vanishing gradually as GaN-NPs content was increasing at 155% wt.%, and the GaN crystalline nature was dominating the film crystallography. Results are anticipated to contribute to preparing smart multifunctional devices based on the PANI-CSA-PEO doped with GaN-NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhu P et al (2016) Direct conversion of perovskite thin films into nanowires with kinetic control for flexible optoelectronic devices. Nano Lett 16(2):871–876

    Article  CAS  Google Scholar 

  2. Cauduro ALF et al (2017) Crystalline molybdenum oxide thin-films for application as interfacial layers in optoelectronic devices. ACS Appl Mater Interfaces 9(8):7717–7724

    Article  Google Scholar 

  3. Suzuki T, Harada K, Honda N, Ouchi K (1999) Preparation of ordered Fe–Pt thin films for perpendicular magnetic recording media. J Magn Magn Mater 193(1–3):85–88

    Article  CAS  Google Scholar 

  4. Fang Z et al (2019) Development and application of the diffusive gradients in thin-films technique for measuring psychiatric pharmaceuticals in natural waters. Environ Sci Technol 53(19):11223–11231

    Article  CAS  Google Scholar 

  5. Kosyachenko L A. (2011) Solar cells thin-film technologies. BoD–Books on Demand

  6. Makhlouf A S H, Tiginyanu I (2011) Nanocoatings and ultra-thin films: Technologies and applications. Elsevier,

  7. Jum’h I, Mousa MS, Mhawish M, Sbeih S, Telfah A (2020) Optical and structural properties of (PANI-CSA-PMMA)/NiNPs nanocomposites thin films for organic optical filters. J Appl Polym Sci 137(18):48643

    Article  CAS  Google Scholar 

  8. Siracusa V, Rocculi P, Romani S, Dalla Rosa M (2008) Biodegradable polymers for food packaging: a review,". Trends in Food Sci Technol. 19(12):634–643

    Article  CAS  Google Scholar 

  9. Pei E, Shen J, Watling J (2015) Direct 3D printing of polymers onto textiles: experimental studies and applications. Rapid Prototyping Journal

  10. Fahlman M, Salaneck WR (2002) Surfaces and interfaces in polymer-based electronics. Surf Sci 500(1–3):904–922

    Article  CAS  Google Scholar 

  11. MacDiarmid AG (2001) “Synthetic metals”: a novel role for organic polymers (Nobel lecture). Angew Chem Int Ed 40(14):2581–2590

    Article  CAS  Google Scholar 

  12. Das TK, Prusty S (2012) Review on conducting polymers and their applications. Polym-Plast Technol Eng 51(14):1487–1500

    Article  CAS  Google Scholar 

  13. Wang C, Dong H, Jiang L, Hu W (2018) Organic semiconductor crystals. Chem Soc Rev 47(2):422–500

    Article  CAS  Google Scholar 

  14. Gupta SK, Jha P, Singh A, Chehimi MM, Aswal DK (2015) Flexible organic semiconductor thin films. J Mater Chem C 3(33):8468–8479

    Article  CAS  Google Scholar 

  15. Wang H, Lin J, Shen ZX (2016) Polyaniline (PANi) based electrode materials for energy storage and conversion. J Sci: Adv mater dev 1(3):225–255

    Google Scholar 

  16. Stejskal J, Kratochvil P, Radhakrishnan N (1993) Polyaniline dispersions 2. UV—Vis absorption spectra. Synth Met 61(3):225–231

    Article  CAS  Google Scholar 

  17. Huang W-S, Humphrey BD, MacDiarmid AG (1986) Polyaniline, a novel conducting polymer morphology and chemistry of its oxidation and reduction in aqueous electrolytes. J Chem Soc Faraday Trans 1 Phys Chem in Cond Phases. 82(8):2385–2400

    CAS  Google Scholar 

  18. Chamroukhi H et al (2018) Optical and structural properties enhancement of hybrid nanocomposites thin films based on polyaniline doped with Zinc Oxide embedded in bimodal mesoporous silica (ZnO@ SiOX) nanoparticles. Opt Mater 84:703–713

    Article  CAS  Google Scholar 

  19. Chen Q, Gong S, Moll J, Zhao D, Kumar SK, Colby RH (2015) Mechanical reinforcement of polymer nanocomposites from percolation of a nanoparticle network. ACS Macro Lett 4(4):398–402

    Article  CAS  Google Scholar 

  20. Bani-Salameh AA, Ahmad A, Alsaad A, Qattan I, Aljarrah IA (2021) Synthesis, optical, chemical and thermal characterizations of PMMA-PS/CeO2 nanoparticles thin film. Polymers 13(7):1158

    Article  CAS  Google Scholar 

  21. Gopalakrishnan M, Purushothaman V, Ramakrishnan V, Bhalerao G, Jeganathan K (2014) The effect of nitridation temperature on the structural, optical and electrical properties of GaN nanoparticles. Cryst Eng Comm 16(17):3584–3591

    Article  CAS  Google Scholar 

  22. Luo X et al (2014) The ethanol-sensing properties of porous GaN nanofibers synthesized by electrospinning. Sens Actuators, B Chem 202:1010–1018

    Article  CAS  Google Scholar 

  23. Matsuki N, Nakano Y, Irokawa Y, Lozac’h M, Sumiya M. (2011). Transparent conducting polymer/nitride semiconductor heterojunction solar cells. Edited by Leonid A. Kosyachenko. 307

  24. Matsuki N, Nakano Y, Irokawa Y, Sumiya M (2010) Heterointerface Properties of novel hybrid solar cells consisting of transparent conductive polymers and III-nitride semiconductor. J Nonlinear Opt Phys Mater 19(04):703–711

    Article  CAS  Google Scholar 

  25. Sağlam M, Biber M, Cakar M, Türüt A (2004) The effects of the ageing on the characteristic parameters of polyaniline/p-type Si/Al structure. Appl Surf Sci 230(1–4):404–410

    Article  Google Scholar 

  26. Matsuki N, Irokawa Y, Matsui T, Kondo M, Sumiya M (2009) Photovoltaic action in polyaniline/n-GaN Schottky diodes. Appl Phys Expr. 2(9):092201

    Article  Google Scholar 

  27. Bhatt K, Kumar S, Tripathi C. (2017). Fabrication and characterization of Al/PMMA/Cr metal-insulator-metal diode in 2017 devices for integrated circuit (DevIC): IEEE. 17–19

  28. Smith GS, Snyder RL (1979) FN: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing. J Appl Crystallogr 12(1):60–65

    Article  CAS  Google Scholar 

  29. Janzen O, Hahn C, Mönch W (1999) Oxidation of GaN {0001}-1 1 surfaces at room temperature. The European Phys J B-Cond Matter and Compl Syst 9(2):315–321

    Article  CAS  Google Scholar 

  30. Bykkam S, Ahmadipour M, Narisngam S, Kalagadda VR, Chidurala SC (2015) Extensive studies on X-ray diffraction of green synthesized silver nanoparticles. Adv Nanopart 4(1):1–10

    Article  Google Scholar 

  31. Darakchieva V, Monemar B, Usui A (2007) On the lattice parameters of GaN. Appl Phys Lett. 91(3):031911

    Article  Google Scholar 

  32. Zak AK, Majid WA, Abrishami ME, Yousefi R (2011) X-ray analysis of ZnO nanoparticles by Williamson-hall and size–strain plot methods. Solid State Sci 13(1):251–256

    Article  Google Scholar 

  33. Kahouli M, Barhoumi A, Bouzid A, Al-Hajry A, Guermazi S (2015) Structural and optical properties of ZnO nanoparticles prepared by direct precipitation method. Superlatt and Microstruct. 85:7–23

    Article  CAS  Google Scholar 

  34. Detchprohm T, Hiramatsu K, Itoh K, Akasaki I (1992) Relaxation process of the thermal strain in the GaN/α-Al2O3 heterostructure and determination of the intrinsic lattice constants of GaN free from the strain. Jpn J Appl Phys 31(10B):L1454

    Article  Google Scholar 

  35. Sahebi R, Roknabadi MR, Behdani M (2020) Semi-transparent Schottky junction solar cell based on evaporated CdSe thin films: Influence of post-deposition air-annealing. Optik. 204:164204

    Article  CAS  Google Scholar 

  36. Sahebi R, Roknabadi MR, Behdani M (2020) Effect of Ag-doping on the structural, optical, electrical and photovoltaic properties of thermally evaporated Cadmium Selenide thin films. Mater Res Expr. 6(12):126453

    Article  Google Scholar 

  37. Al-Bataineh QM et al (2020) Synthesis, crystallography, microstructure, crystal defects, optical and optoelectronic properties of ZnO: CeO2 mixed oxide thin films. Photon, Multidiscipl Digital Publish Inst. 7(4):112

    CAS  Google Scholar 

  38. Alsaad AM et al (2020) Optical, structural, and crystal defects characterizations of dip synthesized (Fe-Ni) Co-Doped ZnO thin films. Materials 13(7):1737

    Article  CAS  Google Scholar 

  39. Khan ZR, Khan MS, Zulfequar M, Khan MS (2011) Optical and structural properties of ZnO thin films fabricated by sol-gel method. Mater Sci Appl 2(05):340

    CAS  Google Scholar 

  40. Malas A, Bharati A, Verkinderen O, Goderis B, Moldenaers P, Cardinaels R (2017) Effect of the GO reduction method on the dielectric properties, electrical conductivity and crystalline behavior of PEO/rGO nanocomposites. Polymers 9(11):613

    Article  Google Scholar 

  41. Nadaf L, Venkatesh K (2015) Polyaniline-Copper Oxide Nano-composites: synthesis and Characterization. Mater Sci Res India 12(2):108–111

    Article  Google Scholar 

  42. Sabu NA, Francis X, Anjaly J, Sankararaman S, Varghese T (2017) Enhanced structural and optical properties of the polyaniline-calcium tungstate (PANI-CaWO 4 nanocomposite for electronics applications. Eur Phys J Plus 132(6):290

    Article  Google Scholar 

  43. Bhadra S, Khastgir D (2008) Extrinsic and intrinsic structural change during heat treatment of polyaniline. Polym Degrad Stab 93(6):1094–1099

    Article  CAS  Google Scholar 

  44. Bao K et al (2010) Synthesis of GaN nanorods by a solid-state reaction. J Nanomater 2010:6

    Article  Google Scholar 

  45. Sun X, Qiao L, Wang X (2013) A novel immunosensor based on Au nanoparticles and polyaniline/multiwall carbon nanotubes/chitosan nanocomposite film functionalized interface. Nano-Micro Letters 5(3):191–201

    Article  CAS  Google Scholar 

  46. Subrahmanyama A, Geethaa V, Alakanandanac A, Kumard JS (2012) Mechanical and electrical conductivity studies of PANI-PVA and PANI-PEO blends. Int J Mater Sci 2(1):27–30

    Google Scholar 

  47. Hassanien AS, Akl AA (2015) Influence of composition on optical and dispersion parameters of thermally evaporated non-crystalline Cd50S50− xSex thin films. J Alloy Compd 648:280–290

    Article  CAS  Google Scholar 

  48. Bandgar D, Khuspe G, Pawar R, Lee C, Patil V (2014) Facile and novel route for preparation of nanostructured polyaniline (PANi) thin films. Appl Nanosci 4(1):27–36

    Article  CAS  Google Scholar 

  49. Al-Bataineh QM, Ahmad AA, Alsaad A, Telfah AD (2021) Optical characterizations of PMMA/metal oxide nanoparticles thin films: bandgap engineering using a novel derived model. Heliyon. 7(1):e05952

    Article  CAS  Google Scholar 

  50. Khan SA, Al-Hazmi F, Al-Heniti S, Faidah A, Al-Ghamdi A (2010) Effect of cadmium addition on the optical constants of thermally evaporated amorphous Se–S–Cd thin films. Current Appl Phys. 10(1):145–152

    Article  Google Scholar 

  51. Urbach F (1953) The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys Rev 92(5):1324

    Article  CAS  Google Scholar 

  52. El-Hagary M, Emam-Ismail M, Shaaban E, El-Taher A (2012) Effect of γ-irradiation exposure on optical properties of chalcogenide glasses Se70S30− xSbx thin films. Radiat Phys Chem 81(10):1572–1577

    Article  CAS  Google Scholar 

  53. Ahmad A, Alsaad A, Al-Bataineh Q, Al-Naafa M (2018) Optical and structural investigations of dip-synthesized boron-doped ZnO-seeded platforms for ZnO nanostructures. Appl Phys A 124(6):458

    Article  Google Scholar 

  54. Joo H-Y, Kim HJ, Kim SJ, Kim SY (1999) Spectrophotometric analysis of aluminum nitride thin films. J Vac Sci Technol, A: Vac, Surf Films 17(3):862–870

    Article  CAS  Google Scholar 

  55. Bhattacharyya D, Chaudhuri S, Pal A (1992) Bandgap and optical transitions in thin films from reflectance measurements. Vacuum 43:313–316

    Article  CAS  Google Scholar 

  56. Kim S, Yoon H, Kim DY, Kim S-O, Leem J-Y (2013) Optical properties and electrical resistivity of boron-doped ZnO thin films grown by sol–gel dip-coating method. Opt Mater 35(12):2418–2424

    Article  CAS  Google Scholar 

  57. Ahmad A, Alsaad A, Al-Bataineh Q, Al-Naafa M (2018) Optical and structural investigations of dip-synthesized boron-doped ZnO-seeded platforms for ZnO nanostructures. Appl Phys A 124(6):1–13

    Article  Google Scholar 

  58. Saeed AA, Ghdeeb NJ, Kadhum FJ (2020) Effect of diode laser on physical properties of CdS thin films. J Phys: Conf Series. 1432(1):012034

    CAS  Google Scholar 

  59. Sirovica S et al (2020) Photo-polymerisation variables influence the structure and subsequent thermal response of dental resin matrices. Dent Mater 36(3):343–352

    Article  CAS  Google Scholar 

  60. Fu DW, Zhang W, Cai HL, Ge JZ, Zhang Y, Xiong RG (2011) Diisopropylammonium chloride: a ferroelectric organic salt with a high phase transition temperature and practical utilization level of spontaneous polarization. Adv Mater 23(47):5658–5662

    Article  CAS  Google Scholar 

  61. Girisun TS, Dhanuskodi S (2009) Linear and nonlinear optical properties of tris thiourea zinc sulphate single crystals. Cryst Res Technol: J Experim and Industr Crystallography 44(12):1297–1302

    Article  CAS  Google Scholar 

  62. El Radaf I (2020) Structural, optoelectrical, linear, and nonlinear optical characterizations of the Cu 2 ZnGeSe 4 thin films. J Mater Sci: Mater in Electr 31(4):1–10

    Google Scholar 

  63. Kumarasinghe P, Dissanayake A, Pemasiri B, Dassanayake B (2017) Effect of post deposition heat treatment on microstructure parameters, optical constants and composition of thermally evaporated CdTe thin films. Mater Sci Semicond Process 58:51–60

    Article  CAS  Google Scholar 

  64. Islam M et al (2013) High quality 1 μm thick CdTe absorber layers grown by magnetron sputtering for solar cell application. Curr Appl Phys 13:S115–S121

    Article  Google Scholar 

  65. Enriquez JP, Mathews N, Hernández GP, Mathew X (2013) Influence of the film thickness on structural and optical properties of CdTe thin films electrodeposited on stainless steel substrates. Mater Chem Phys 142(1):432–437

    Article  Google Scholar 

  66. Eid A, Seddek M, Salem A, Dahy T (2008) Structural characterization and optical properties of Cd (1–x) MnxSe thin films. Vacuum 83(2):401–407

    Article  CAS  Google Scholar 

  67. Caglar Y (2013) Sol–gel derived nanostructure undoped and cobalt doped ZnO: structural, optical and electrical studies. J Alloy Compd 560:181–188

    Article  CAS  Google Scholar 

  68. Barrett C, Massalski T (1980) Structure of Metals: Crystallographic Methods, Principles and Data

  69. Ramı́rez-Ortiz J et al (2001) A catalytic application of Cu2O and CuO films deposited over fiberglass. Appl Surf Sci. 174(3–4):177–184

    Article  Google Scholar 

  70. Li J, Li H, Xue Y, Fang H, Wang W (2014) Facile electrodeposition of environment-friendly Cu2O/ZnO heterojunction for robust photoelectrochemical biosensing. Sens Actuators, B Chem 191:619–624

    Article  CAS  Google Scholar 

  71. Lines M (1991) Oxide glasses for fast photonic switching: a comparative study. J Appl Phys 69(10):6876–6884

    Article  CAS  Google Scholar 

  72. Muhammad F et al (2011) Acid degradable ZnO quantum dots as a platform for targeted delivery of an anticancer drug. J Mater Chem 21(35):13406–13412

    Article  CAS  Google Scholar 

  73. AL-AkhrasAlzoubiAhmadAbabnehTelfah MASEAARA (2021) Studies of composite films of polyethylene oxide doped with potassium hexachloroplatinate. J Appl Polym Sci. 138(5):49757

    Article  Google Scholar 

  74. Telfah A et al (2021) Dielectric relaxation, XPS and structural studies of polyethylene oxide/iodine complex composite films. Poly Bull. 1–20

Download references

Acknowledgements

The authors would like to acknowledge Jordan University of Science and Technology (JUST) in Jordan. Our thanks are extended to Prof. Mohammad-Ali H. Al-Akhras for helping our members to use his biomedical laboratories. Credit Author Statement: Ahmad A. Ahmad: Conceptualization, Methodology, Supervision, Writing- Reviewing and Editing. Areen A. Bani-Salameh: Data acquisition, Writing-Original draft preparation, Software. Qais M. Al-Bataineh: Data collection, Methodology, Data acquisition, Writing-Original draft preparation, Software, Inshad Jum’h, Conceptualization, Methodology, and Ahmad D. Telfah: Visualization, Supervision and revising the final draft

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad A. Ahmad.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, A.A., Bani-Salameh, A.A., Al-Bataineh, Q.M. et al. Optical, structural and morphological properties of synthesized PANI-CSA-PEO-based GaN nanocomposite films for optoelectronic applications. Polym. Bull. 80, 809–828 (2023). https://doi.org/10.1007/s00289-021-04033-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-04033-w

Keywords

Navigation