Skip to main content
Log in

Structure–dynamic properties relationships in poly(ethylene oxide)/silicon dioxide nanocomposites: dielectric relaxation study

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Films of polyethylene oxide (PEO) filled with silicon dioxide (SiO2) were synthesized via casting method. The formation of the PEO/SiO2 nanocomposites was characterized by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) measurements. The XRD patterns confirmed that increasing SiO2 in semicrystalline PEO enhances the amorphousity and causes a disturbance in the crystalline phase. The influence of the SiO2 on the dielectric relaxation spectra of PEO in wide temperature and frequency ranges was investigated. Two molecular relaxation processes are observed: main (α-) and secondary (β-) relaxations. For the α-process, the process slowed down with adding SiO2 fillers reflecting an increase in the glass transition temperature, Tg. This trend was also verified by differential scanning calorimetry (DSC). The findings indicated that adding SiO2 restricted the motion of PEO segments, while such changes were not observed in the glassy state. Further, the attenuation of the electric field of the terahertz waves passed through PEO/SiO2 samples was evaluated. In the terahertz range, the resonant peaks of PEO originated from lattice vibration feature the complex dielectric function. These peaks were weakened broadened and red-shifted by increasing of SiO2 concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Braun PMALSSPV (2003) Nanocomposite science and technology. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  2. Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T (1996) Electrical conductivity of individual carbon nanotubes. Nature 382(6586):54–56

    Article  CAS  Google Scholar 

  3. Aranguren MI, Mora E, DeGroot JV, Macosko CW (1992) Effect of reinforcing fillers on the rheology of polymer melts. J Rheol 36(6):1165–1182

    Article  CAS  Google Scholar 

  4. Bansal A, Yang H, Li C, Benicewicz BC, Kumar SK, Schadler LS (2006) Controlling the thermomechanical properties of polymer nanocomposites by tailoring the polymer–particle interface. J Polym Sci Part B Polym Phys 44(20):2944–2950

    Article  CAS  Google Scholar 

  5. Mujtaba A, Keller M, Ilisch S, Radusch HJ, Beiner M, Thurn-Albrecht T, Saalwächter K (2014) Detection of surface-immobilized components and their role in viscoelastic reinforcement of rubber-silica nanocomposites. ACS Macro Lett 3(5):481–485

    Article  CAS  Google Scholar 

  6. Fritzsche J, Klüppel M (2010) Structural dynamics and interfacial properties of filler-reinforced elastomers. J Phys Condens Matter 23(3):035104

    Article  PubMed  CAS  Google Scholar 

  7. Fragiadakis D, Bokobza L, Pissis P (2011) Dynamics near the filler surface in natural rubber-silica nanocomposites. Polymer 52(14):3175–3182

    Article  CAS  Google Scholar 

  8. Fragiadakis D, Runt J (2013) Molecular dynamics of segmented polyurethane copolymers: influence of soft segment composition. Macromolecules 46(10):4184–4190

    Article  CAS  Google Scholar 

  9. Kremer F, Huwe A, Arndt M, Behrens P, Schwieger W (1999) How many molecules form a liquid? J Phys Condens Matter 11(10A):A175–A188

    Article  CAS  Google Scholar 

  10. Holt AP, Sangoro JR, Wang Y, Agapov AL, Sokolov AP (2013) Chain and segmental dynamics of poly(2-vinylpyridine) nanocomposites. Macromolecules 46(10):4168–4173

    Article  CAS  Google Scholar 

  11. Papon A, Montes H, Hanafi M, Lequeux F, Guy L, Saalwächter K (2012) Glass-transition temperature gradient in nanocomposites: evidence from nuclear magnetic resonance and differential scanning calorimetry. Phys Rev Lett 108(6):065702

    Article  PubMed  CAS  Google Scholar 

  12. Nusser K, Schneider GJ, Richter D (2013) Rheology and anomalous flow properties of poly(ethylene-alt-propylene)–silica nanocomposites. Macromolecules 46(15):6263–6272

    Article  CAS  Google Scholar 

  13. Zhang Q, Archer LA (2002) Poly(ethylene oxide)/silica nanocomposites: structure and rheology. Langmuir 18(26):10435–10442

    Article  CAS  Google Scholar 

  14. Hsissou R, Berradi M, El Bouchti M, El Bachiri A, El Harfi A (2019) Synthesis characterization rheological and morphological study of a new epoxy resin pentaglycidyl ether pentaphenoxy of phosphorus and their composite (PGEPPP/MDA/PN). Polym Bull 76(9):4859–4878

    Article  CAS  Google Scholar 

  15. Nusser K, Schneider GJ, Richter D (2011) Microscopic origin of the terminal relaxation time in polymer nanocomposites: an experimental precedent. Soft Matter 7(18):7988–7991

    Article  CAS  Google Scholar 

  16. Li Y, Kröger M, Liu WK (2012) Nanoparticle effect on the dynamics of polymer chains and their entanglement network. Phys Rev Lett 109(11):118001

    Article  PubMed  CAS  Google Scholar 

  17. Kudlik A, Benkhof S, Blochowicz T, Tschirwitz C, Rössler E (1999) The dielectric response of simple organic glass formers. J Mol Struct 479(2):201–218

    Article  CAS  Google Scholar 

  18. Hofmann M, Herrmann A, Abou Elfadl A, Kruk D, Wohlfahrt M, Rössler EA (2012) Glassy, rouse, and entanglement dynamics as revealed by field cycling 1H NMR relaxometry. Macromolecules 45(5):2390–2401

    Article  CAS  Google Scholar 

  19. Körber T, Mohamed F, Hofmann M, Lichtinger A, Willner L, Rössler EA (2017) The nature of secondary relaxations: the case of poly(ethylene-alt-propylene) studied by dielectric and deuteron NMR spectroscopy. Macromolecules 50(4):1554–1568

    Article  CAS  Google Scholar 

  20. Kinosita K Jr, Kawato S, Ikegami A (1977) A theory of fluorescence polarization decay in membranes. Biophys J 20(3):289–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sitnitsky AE (2011) Analytic treatment of nuclear spin-lattice relaxation for diffusion in a cone model. J Magn Reson (San Diego, Calif.: 1997) 213(1):58–68

    Article  CAS  Google Scholar 

  22. Wang CC, Pecora R (1980) Time-correlation functions for restricted rotational diffusion. J Chem Phys 72(10):5333–5340

    Article  CAS  Google Scholar 

  23. Vogel M, Rössler E (2001) Slow β process in simple organic glass formers studied by one and two-dimensional 2H nuclear magnetic resonance. II. Discussion of motional models. J Chem Phys 115(23):10883–10891

    Article  CAS  Google Scholar 

  24. Vogel M, Medick P, Rössler EA (2005) Secondary relaxation processes in molecular glasses studied by nuclear magnetic resonance spectroscopy. In: Webb GA (ed) Annual reports on NMR spectroscopy, vol 56. Academic Press, pp 231–299

  25. Bock D, Kahlau R, Micko B, Pötzschner B, Schneider GJ, Rössler EA (2013) On the cooperative nature of the β-process in neat and binary glasses: a dielectric and nuclear magnetic resonance spectroscopy study. J Chem Phys 139(6):064508

    Article  CAS  PubMed  Google Scholar 

  26. Hoffman JD (1969) Anelastic and dielectric effects in polymeric solids, N. G. McCrum, B. E. Read, and G. Williams, Wiley, New York, 1967. pp 617. ArticleTitle5.00. J Appl Polym Sci 13(2):397

    Article  Google Scholar 

  27. Calderwood JH (1977) Dielectric spectroscopy of polymers. Phys Bull 28(12):572

    Article  Google Scholar 

  28. Se K, Adachi K, Kotaka T (1981) Dielectric relaxations in poly(ethylene oxide): dependence on molecular weight. Polym J 13(11):1009–1017

    Article  CAS  Google Scholar 

  29. Armand MB (1986) Polymer electrolytes. Annu Rev Mater Sci 16(1):245–261

    Article  CAS  Google Scholar 

  30. Staiti P, Lufrano F (2010) Investigation of polymer electrolyte hybrid supercapacitor based on manganese oxide–carbon electrodes. Electrochim Acta 55(25):7436–7442

    Article  CAS  Google Scholar 

  31. Pandey GP, Hashmi SA, Agrawal RC (2008) Hot-press synthesized polyethylene oxide based proton conducting nanocomposite polymer electrolyte dispersed with SiO2 nanoparticles. Solid State Ionics 179(15):543–549

    Article  CAS  Google Scholar 

  32. Choudhary S, Sengwa RJ (2015) Dielectric dispersion and relaxation studies of melt compounded poly(ethylene oxide)/silicon dioxide nanocomposites. Polym Bull 72(10):2591–2604

    Article  CAS  Google Scholar 

  33. Morsi MA, Rajeh A, Al-Muntaser AA (2019) Reinforcement of the optical, thermal and electrical properties of PEO based on MWCNTs/Au hybrid fillers: nanodielectric materials for organoelectronic devices. Compos B Eng 173:106957

    Article  CAS  Google Scholar 

  34. Hameed TA, Mohamed F, Abdelghany AM, Turky G (2020) Influence of SiO2 nanoparticles on morphology, optical, and conductivity properties of Poly (ethylene oxide). J Mater Sci Mater Electron 31(13):10422–10436

    Article  CAS  Google Scholar 

  35. Böttcher CJF (1973) Theory of electric polarization. Elsevier BV

  36. Turky G, Sangoro JR, Abdel Rehim M, Kremer F (2010) Secondary relaxations and electrical conductivity in hyperbranched polyester amides. J Polym Sci Part B Polym Phys 48(14):1651–1657

    Article  CAS  Google Scholar 

  37. Blochowicz T, Gainaru C, Medick P, Tschirwitz C, Rössler EA (2006) The dynamic susceptibility in glass forming molecular liquids: the search for universal relaxation patterns II. J Chem Phys 124(13):134503

    Article  CAS  PubMed  Google Scholar 

  38. Zhang X-C, Xu J (2010) Introduction to THz wave photonics, vol 29. Springer

  39. Aziz SB, Marif RB, Brza MA, Hassan AN, Ahmad HA, Faidhalla YA, Kadir MFZ (2019) Structural, thermal, morphological and optical properties of PEO filled with biosynthesized Ag nanoparticles: new insights to band gap study. Results Phys 13:102220

    Article  Google Scholar 

  40. Abdelrazek EM, Abdelghany AM, Badr SI, Morsi MA (2018) Structural, optical, morphological and thermal properties of PEO/PVP blend containing different concentrations of biosynthesized Au nanoparticles. J Mater Res Technol 7(4):419–431

    Article  CAS  Google Scholar 

  41. Abdelghany AM, Abdelrazek EM, Badr SI, Morsi MA (2016) Effect of gamma-irradiation on (PEO/PVP)/Au nanocomposite: materials for electrochemical and optical applications. Mater Des 97:532–543

    Article  CAS  Google Scholar 

  42. Gupta H, Na S, Balo L, Singh VK, Singh SK, Tripathi AK, Verma YL, Singh RK (2017) Effect of temperature on electrochemical performance of ionic liquid based polymer electrolyte with Li/LiFePO4 electrodes. Solid State Ionics 309:192–199

    Article  CAS  Google Scholar 

  43. Etienne S, Becker C, Ruch D, Grignard B, Cartigny G, Detrembleur C, Calberg C, Jerome R (2007) Effects of incorporation of modified silica nanoparticles on the mechanical and thermal properties of PMMA. J Therm Anal Calorim 87(1):101–104

    Article  CAS  Google Scholar 

  44. Mallakpour S, Naghdi M (2018) Polymer/SiO2 nanocomposites: production and applications. Prog Mater Sci 97:409–447

    Article  CAS  Google Scholar 

  45. Nikje MMA, Garmarudi AB, Haghshenas M, Mazaheri Z (2009) In Improving the performance of heat insulation polyurethane foams by silica nanoparticles, Nanotechnology in construction 3, Berlin, Heidelberg, 2009//; Bittnar Z, Bartos PJM, Němeček J, Šmilauer V, Zeman J (eds) Springer Berlin Heidelberg: Berlin, Heidelberg, 2009; pp 149–154

  46. Saeed K, Ishaq M, Ahmad I, Shakirullah M, Latif U (2013) Morphological, thermal and mechanical properties of nanoclay-filled polyethylene oxide nanocomposites. J Chem Soc Pak 35(3):700–703

    CAS  Google Scholar 

  47. Bizarria MTM, Giraldi ALFdM, de Carvalho CM, Velasco JI, d’Ávila MA, Mei LHI (2007) Morphology and thermomechanical properties of recycled PET–organoclay nanocomposites. J Appl Polym Sci 104(3):1839–1844

    Article  CAS  Google Scholar 

  48. Ou CF, Ho MT, Lin JR (2003) The nucleating effect of montmorillonite on crystallization of pet/montmorillonite nanocomposite. J Polym Res 10(2):127–132

    Article  CAS  Google Scholar 

  49. Chaurasia SK, Saroj AL, Na S, Singh VK, Tripathi AK, Gupta AK, Verma YL, Singh RK (2015) Studies on structural, thermal and AC conductivity scaling of PEO-LiPF6 polymer electrolyte with added ionic liquid [BMIMPF6]. AIP Adv 5(7)

  50. Chandni B, Ram S, Anil A, Sharma AL (2015) Effect of nano-filler on the properties of polymer nanocomposite films of PEO/PAN complexed with NaPF6. J Mater Sci Eng B 5(12)

  51. Ghanem M., Badr Y, Hameed TA, El Marssi M, Lahmar A, Wahab HA, Battisha IK (2019) Synthesis and characterization of undoped and Er-doped ZnO nano-structure thin films deposited by sol-gel spin coating technique. Mater Res Express 6(8)

  52. Hameed TA, Wassel AR, El Radaf IM (2019) Investigating the effect of thickness on the structural, morphological, optical and electrical properties of AgBiSe2 thin films. J Alloy Compd 805:1–11

    Article  CAS  Google Scholar 

  53. Jin X, Zhang S, Runt J (2002) Observation of a fast dielectric relaxation in semi-crystalline poly(ethylene oxide). Polymer 43(23):6247–6254

    Article  CAS  Google Scholar 

  54. Mohamed F, Hofmann M, Pötzschner B, Fatkullin N, Rössler EA (2015) Dynamics of PPI dendrimers: a study by dielectric and 2H NMR spectroscopy and by field-cycling 1H NMR relaxometry. Macromolecules 48(10):3294–3302

    Article  CAS  Google Scholar 

  55. Pötzschner B, Mohamed F, Bächer C, Wagner E, Lichtinger A, Bock D, Kreger K, Schmidt HW, Rössler EA (2017) Non-polymeric asymmetric binary glass-formers. II. Secondary relaxation studied by dielectric, 2H NMR, and 31P NMR spectroscopy. J Chem Phys 146(16):164504

    Article  PubMed  CAS  Google Scholar 

  56. Money BK, Hariharan K, Swenson J (2014) Relation between structural and conductivity relaxation in PEO and PEO based electrolytes. Solid State Ionics 262:785–789

    Article  CAS  Google Scholar 

  57. Chehrazi E, Taheri-Qazvini N (2018) Segmental dynamics and cooperativity length of PMMA/SAN miscible blend intercalated in organically modified nanoclay. Langmuir 34(47):14358–14367

    Article  CAS  PubMed  Google Scholar 

  58. Cheng SZD, Wu ZQ, Wunderlich B (1987) Glass transition and melting behavior of poly(thio-1,4-phenylene). Macromolecules 20(11):2802–2810

    Article  CAS  Google Scholar 

  59. Cheng SZD, Cao MY, Wunderlich B (1986) Glass transition and melting behavior of poly(oxy-1,4-phenyleneoxy-1,4-phenylenecarbonyl-1,4-phenylene) (PEEK). Macromolecules 19(7):1868–1876

    Article  CAS  Google Scholar 

  60. Vaia RA, Sauer BB, Tse OK, Giannelis EP (1997) Relaxations of confined chains in polymer nanocomposites: glass transition properties of poly(ethylene oxide) intercalated in montmorillonite. J Polym Sci Part B Polym Phys 35(1):59–67

    Article  CAS  Google Scholar 

  61. Ding Y, Pawlus S, Sokolov AP, Douglas JF, Karim A, Soles CL (2009) In Dielectric spectroscopy investigation of relaxation in C60-polyisoprene nanocomposites

  62. Ye HM, Li H, Yao SF (2017) Characterizing the structure and phase transformation of poly(ethylene oxide)-urea complexes using terahertz time-domain spectroscopy. Appl Spectrosc 71(11):2549–2554

    Article  CAS  PubMed  Google Scholar 

  63. Komatsu M, Hosobuchi M, Xie X, Cheng Y, Furukawa Y, Mizuno M, Fukunaga K, Ohki Y (2014) Terahertz absorption spectra of oxidized polyethylene and their analysis by quantum chemical calculations. Jpn J Appl Phys 53(9):092402

    Article  CAS  Google Scholar 

  64. D’Angelo F, Mics Z, Bonn M, Turchinovich D (2014) Ultra-broadband THz time-domain spectroscopy of common polymers using THz air photonics. Opt Express 22(10):12475–12485

    Article  PubMed  CAS  Google Scholar 

  65. Ohki Y, Okada M, Fuse N, Iwai K, Mizuno M, Fukunaga K (2008) Terahertz time-domain spectroscopic analysis of molecular behavior in polyamide nanocomposites. Appl Phys Express 1:122401

    Article  CAS  Google Scholar 

Download references

Funding

This research was not funded by any authority, entity, or individual other than the authors themselves. They bear all the costs of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Mohamed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, F., Hameed, T.A., Abdelghany, A.M. et al. Structure–dynamic properties relationships in poly(ethylene oxide)/silicon dioxide nanocomposites: dielectric relaxation study. Polym. Bull. 78, 5205–5223 (2021). https://doi.org/10.1007/s00289-020-03368-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03368-0

Keywords

Navigation