Skip to main content
Log in

Application of hard-core Exponential-6 intermolecular potential function to determine the second osmotic virial coefficients of polymer solutions

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The osmotic pressures of polymer solutions are related to their corresponding osmotic virial coefficients. There are several experimental methods to determine the osmotic virial coefficients. However, these experimental virial coefficients are restricted to the experimental conditions. An alternative way of determining the osmotic virial coefficient is with the help of statistical thermodynamics, and unlike experimental methods, because of its theoretical basis, it is not restricted to limited ranges of experimental conditions. The osmotic virial coefficients can be used to calculate the different properties of polymers and polymer solutions, such as the average molecular weight of the polymer (M) and the theta temperature. In this work, for the first time, the second osmotic virial coefficients of a number of polymeric solutions are calculated using the Kihara and Exponential-6 intermolecular potential functions. Furthermore, the hard-core Exponential-6 model, that we have proposed, is also investigated. Additionally, the molecular weights and theta temperatures of these solutions are determined using the calculated second virial coefficients and are compared to literature data. The results show that the recent hard-core Exponential-6 potential model is more accurate than the Kihara and Exponential-6 models and is applicable for calculating other properties of the polymers and polymer solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Utracki LA, Wilkie CA (2014) Polymer blends handbook, 2nd edn. Springer, Dordrecht

    Google Scholar 

  2. Striolo A, Prausnitz JM (2000) Osmotic second virial cross coefficients for star and linear polystyrenes. J Chem Phys 113(7):2927–2931. https://doi.org/10.1063/1.1305888

    Article  CAS  Google Scholar 

  3. Norisuye T, Nakamura Y, Akasaka K (1993) Reduced third virial coefficient for linear flexible polymers in good solvents. Macromolecules 26(15):3791–3794. https://doi.org/10.1021/ma00067a011

    Article  CAS  Google Scholar 

  4. Wohlfarth C (2010) Polymer solutions: physical properties and their relations I (thermodynamic properties: PVT data and miscellaneous properties of polymer solutions), vol 6. Springer, Berlin

    Google Scholar 

  5. Koyama R (1959) The second virial coefficient of polymer solutions. J Polym Sci 35(128):247–258. https://doi.org/10.1002/pol.1959.1203512820

    Article  CAS  Google Scholar 

  6. Poling BE, Prausnitz JM, O’Connell JP (2001) The properties of gases and liquids, 5th edn. McGraw-Hill, New York

    Google Scholar 

  7. Stockmayer WH, Casassa EF (1952) The third virial coefficient in polymer solutions. J Chem Phys 20(10):1560–1566. https://doi.org/10.1063/1.1700216

    Article  CAS  Google Scholar 

  8. Caracciolo S, Mognetti BM, Pelissetto A (2006) Virial coefficients and osmotic pressure in polymer solutions in good-solvent conditions. J Chem Phys 125(9):094903. https://doi.org/10.1063/1.2338913

    Article  CAS  PubMed  Google Scholar 

  9. Ersch C, Meijvogel LLC, van der Linden E, Martin A, Venema P (2016) Interactions in protein mixtures. Part I: second virial coefficients from osmometry. Food Hydrocolloids 52:982–990. https://doi.org/10.1016/j.foodhyd.2015.07.020

    Article  CAS  Google Scholar 

  10. Ersch C, van der Linden E, Martin A, Venema P (2016) Interactions in protein mixtures. Part II: a virial approach to predict phase behavior. Food Hydrocolloids 52:991–1002. https://doi.org/10.1016/j.foodhyd.2015.07.021

    Article  CAS  Google Scholar 

  11. Schleinitz M, Teschner D, Sadowski G, Brandenbusch C (2019) Second osmotic virial coefficients of therapeutic proteins in the presence of excipient-mixtures can be predicted to aid an efficient formulation design. J Mol Liq 283:575–583. https://doi.org/10.1016/j.molliq.2019.03.064

    Article  CAS  Google Scholar 

  12. Matsumura K (1970) Solution behaviour of poly(o-chlorostyrene). Polym J 1(3):322–326. https://doi.org/10.1295/polymj.1.322

    Article  CAS  Google Scholar 

  13. Lu W, Yin P, Osa M, Wang W, Kang N-G, Hong K, Mays JW (2017) Solution properties, unperturbed dimensions, and chain flexibility of poly(1-adamantyl acrylate). J Polym Sci Part B Polym Phys 55(20):1526–1531. https://doi.org/10.1002/polb.24408

    Article  CAS  Google Scholar 

  14. Moses CL, Van Hook WA (2003) Pressure dependence of the second virial coefficient of dilute polystyrene solutions. J Polym Sci Part B Polym Phys 41(23):3070–3076. https://doi.org/10.1002/polb.10620

    Article  CAS  Google Scholar 

  15. Szydlowski J, Van Hook WA (2001) Osmotic compressibility in dilute polystyrene-cyclohexane and polystyrene-methylcyclohexane solutions: correlation of polystyrene virial coefficients with solvent quality. J Polym Sci Part B Polym Phys 39(1):184–196. https://doi.org/10.1002/1099-0488(20010101)39:1<184::AID-POLB170>3.0.CO;2-X

    Article  CAS  Google Scholar 

  16. Oohashi T, Inoue K, Nakamura Y (2014) Second and third virial coefficients of low-molecular-weight polyisoprene in 1,4-dioxane. Polym J 46:699–703. https://doi.org/10.1038/pj.2014.43

    Article  CAS  Google Scholar 

  17. Peyrovedin H, Shariati A (2018) A hard-core Exp-6 intermolecular potential function for determining virial coefficients of pure nonpolar and slightly-polar molecules. Fluid Phase Equilib 459:103–109. https://doi.org/10.1016/j.fluid.2017.12.003

    Article  CAS  Google Scholar 

  18. Rudin A (1999) The elements of polymer science and engineering, 2nd edn. Academic Press, Boston

    Google Scholar 

  19. Isihara A, Koyama R (1956) Theory of dilute high-polymer solutions (the Pearl Necklace model). J Chem Phys 25(4):712–716. https://doi.org/10.1063/1.1743034

    Article  Google Scholar 

  20. Kihara T (1955) Virial coefficients and models of molecules in gases. B. Rev Mod Phys 27(4):412–423. https://doi.org/10.1103/RevModPhys.27.412

    Article  CAS  Google Scholar 

  21. Kihara T (1953) Virial coefficients and models of molecules in gases. Rev Mod Phys 25(4):831–843. https://doi.org/10.1103/RevModPhys.25.831

    Article  CAS  Google Scholar 

  22. Mason EA (1954) Transport properties of gases obeying a modified buckingham (Exp-Six) potential. J Chem Phys 22(2):169–186. https://doi.org/10.1063/1.1740026

    Article  CAS  Google Scholar 

  23. Prausnitz JM, Lichtenthaler RN, Azevedo E (1999) Molecular thermodynamics of fluid-phase equilibria, 3rd edn. Prentice Hall PTR, Upper Saddle River, NJ

    Google Scholar 

  24. Matsumoto T, Nishioka N, Fujita H (1972) Excluded-volume effects in dilute polymer solutions. IV. Polyisobutylene. J Polym Sci Part B Polym Phys 10(1):23–42. https://doi.org/10.1002/pol.1972.160100103

    Article  Google Scholar 

  25. Gundert F, Wolf BA (1987) On the molecular weight dependence of the thermodynamic and of the hydrodynamic pair interaction between chain molecules. IV. Second virial coefficients revisited. J Chem Phys 87(10):6156–6165. https://doi.org/10.1063/1.453491

    Article  CAS  Google Scholar 

  26. Ho-Duc N, Daoust H, Blssonnette F (1972) Etude de propriétés hydrodynamiques de solutions de polymères en mauvais solvants. Can J Chem 50(3):305–309. https://doi.org/10.1139/v72-045

    Article  Google Scholar 

  27. Huglin MB, Khorasani MKH, Sasia PM (1988) Interpenetration functions and excluded-volume theories in relation to light scattering data from poly(phenyl acrylate) solutions. Polymer 29(9):1590–1593. https://doi.org/10.1016/0032-3861(88)90267-4

    Article  CAS  Google Scholar 

  28. Allen G, Booth C, Price C (1966) The dilute solution properties of poly(propylene oxide). Polymer 7(4):167–175. https://doi.org/10.1016/0032-3861(66)90010-3

    Article  CAS  Google Scholar 

  29. Yamakawa H, Abe F, Einaga Y (1994) Second virial coefficient of Oligo- and Polystyrenes near the.THETA. temperature. More on the coil-to-globule transition. Macromolecules 27(20):5704–5712. https://doi.org/10.1021/ma00098a026

    Article  CAS  Google Scholar 

  30. Cantow HJ, Schuster RH (1982) Thermodynamics of macromolecular systems. Polym Bull 8(5):225–231. https://doi.org/10.1007/BF00700282

    Article  CAS  Google Scholar 

  31. Orofino TA, Mickey JW (1963) Dilute solution properties of linear polystyrene IN Θ-solvent media. J Chem Phys 38(10):2512–2520. https://doi.org/10.1063/1.1733534

    Article  CAS  Google Scholar 

  32. Yamamoto A, Fujii M, Tanaka G, Yamakawa H (1971) More on the analysis of dilute solution data: polystyrenes prepared anionically in tetrahydrofuran. Polym J 2(6):799–811. https://doi.org/10.1295/polymj.2.799

    Article  CAS  Google Scholar 

  33. Kajiwara K, Ross-Murphy SB (1975) Computer analysis of light scattering data—I: polystyrene-cyclohexane system. Eur Polym J 11(5):365–376. https://doi.org/10.1016/0014-3057(75)90017-8

    Article  CAS  Google Scholar 

  34. Lechner M, Schulz GV (1970) Lichtstreuung von hochmolekularen lösungen in abhängigkeit von temperatur und druck. Eur Polym J 6(7):945–957. https://doi.org/10.1016/0014-3057(70)90029-7

    Article  CAS  Google Scholar 

  35. Nicolai T, Brown W (1996) Cooperative diffusion of concentrated polymer solutions: a static and dynamic light scattering study of polystyrene in DOP. Macromolecules 29(5):1698–1704. https://doi.org/10.1021/ma946430p

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to show their gratitude to Shiraz University for providing computer facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Shariati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peyrovedin, H., Khorram, M. & Shariati, A. Application of hard-core Exponential-6 intermolecular potential function to determine the second osmotic virial coefficients of polymer solutions. Polym. Bull. 78, 931–950 (2021). https://doi.org/10.1007/s00289-020-03141-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03141-3

Keywords

Navigation