Skip to main content
Log in

Highly permeable transition metal ions through perfluorosulfonate cation-exchange membrane

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Zn2+, Cu2+, and Ni2+ ionic permeabilities through a Nafion 115 membrane, containing sulfonate functional groups capable of cation exchange with metal ions, were measured in this work. Single and binary salt mixtures were prepared at 10, 100, and 1000 ppm concentrations, and the ionic permeabilities and selectivities (α) were measured. The ionic permeabilities were in the 10−6–10−5 cm2/s range, and the order of ion permeability depends on the ionic concentration. At low (10 ppm) concentration, the smaller Ni2+ transported faster than the other two ions and the permeability was dominated by the ionic diffusivity. As the concentration was increased to 100 and 1000 ppm, the ion permeability was increased because more ions were exchanged onto the sulfonate groups. Moreover, Zn2+ became the fastest ion among the three as the ion transport became solubility-controlled at the medium and high concentrations. In spite of the ion permeability order being dependent upon the feed concentration, the separation selectivity was not affected by the presence of co-ions in the tested conditions. The separation selectivity from a binary mixture could be estimated from the permeability ratio obtained from single solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Fu F, Xie L, Tang B, Wang Q, Jiang S (2012) Application of a novel strategy-advanced Fenton-chemical precipitation to the treatment of strong stability chelated heavy metal containing wastewater. Chem Eng J 189–190:283–287

    Article  Google Scholar 

  2. Klas S, Dubowski Y, Pritosiwi G, Gerth J, Calmano W, Lahav O (2011) Extent and mechanism of metal ion incorporation into precipitated ferrites. J Colloid Interface Sci 358(1):129–135

    Article  CAS  Google Scholar 

  3. Vieira EG, Soares IV, Filho NLD, da Silva NC, Perujo SD, Bastos AC, Garcia EF, Ferreira TT, Fraceto LF, Rosa AH (2012) Study on soluble heavy metals with preconcentration by using a new modified oligosilsesquioxane sorbent. J Hazard Mater 237–238:215–222

    Article  Google Scholar 

  4. Alothman ZA, Habila M, Yilmaz E, Soylak M (2012) Solid phase extraction of Cd(II), Pb(II), Zn(II) and Ni(II) from food samples using multiwalled carbon nanotubes impregnated with 4-(2-thiazolylazo)resorcinol. Microchim Acta 177(3–4):397–403

    Article  CAS  Google Scholar 

  5. Negaresh E, Antony A, Bassandeh M, Richardson DE, Leslie G (2012) Selective separation of contaminants from paper mill effluent using nanofiltration. Chem Eng Res Des 90(4):576–583

    Article  CAS  Google Scholar 

  6. Wang T, Song Y, Li B, Zhou X (2012) Chelating-ultrafiltration treatment of some heavy metal ions in aqueous solutions by crosslinking carboxymethyl modified cornstarch. Water Air Soil Pollut 223(2):679–686

    Article  CAS  Google Scholar 

  7. Lee S, Lee E, Ra J, Lee B, Kim S, Choi SH, Kim SD, Cho J (2008) Characterization of marine organic matters and heavy metals with respect to desalination with RO and NF membranes. Desalination 221(1–3):244–252

    Article  CAS  Google Scholar 

  8. Mahmoud A, Hoadley AFA (2012) An evaluation of a hybrid ion exchange electrodialysis process in the recovery of heavy metals from simulated dilute industrial wastewater. Water Res 46(10):3364–3376

    Article  CAS  Google Scholar 

  9. Moura RCA, Bertuol DA, Ferreira CA, Amado FDR (2012) Study of chromium removal by the electrodialysis of tannery and metal-finishing effluents. Int J Chem Eng 2012:179312-1–179312-7

    Article  Google Scholar 

  10. Caprarescu S, Vaireanu DI, Cojocaru A, Maior I, Purcar V (2011) A 3-cell electrodialysis system for the removal of copper ions from electroplating wastewater. Optoelectron Adv Mater Rapid Commun 5(12):1346–1351

    CAS  Google Scholar 

  11. Martí-Calatayud MC, García-Gabaldón M, Pérez-Herranz V (2012) Study of the effects of the applied current regime and the concentration of chromic acid on the transport of Ni2+ ions through Nafion 117 membranes. J Membr Sci 392–393:137–149

    Article  Google Scholar 

  12. Khan MMA, Rafiuddin Inamuddin (2013) PVC based polyvinyl alcohol zinc oxide composite membrane: synthesis and electrochemical characterization for heavy metal ions. J Ind Eng Chem 19(4):1365–1370

    Article  CAS  Google Scholar 

  13. Abou-Shady A, Peng C, Almeria OJ, Xu H (2012) Effect of pH on separation of Pb(II) and NO3 from aqueous solutions using electrodialysis. Desalination 285:46–53

    Article  CAS  Google Scholar 

  14. Agarwal C, Chaudhury S, Mhatre A, Goswami A (2010) Anion dependence of transport of mercury ion through Nafion-117 membrane. J Phys Chem B 114(13):4471–4476

    Article  CAS  Google Scholar 

  15. Kir E, Perçin Özkorucuklu S, Sardohan Köseoǧlu T, Karamizrak E (2013) Removal of Cr(III) and Cu(II) using poly(2-chloroaniline)/polyvinylidene uoride composite cation-exchange membranes by Donnan dialysis. Turk J Chem 37(2):195–203

    CAS  Google Scholar 

  16. Gu J, Wu C, Wu Y, Luo J, Xu T (2012) PVA-based hybrid membranes from cation exchange multisilicon copolymer for alkali recovery. Desalination 304:25–32

    Article  CAS  Google Scholar 

  17. Amara M, Kerdjoudj H, Bouguelia A, Trari M (2008) A combination between membrane selectivity and photoelectrochemistry to the separation of copper, zinc and nickel in aqueous solutions. J Membr Sci 312(1–2):125–131

    Article  CAS  Google Scholar 

  18. Uragami T (2017) Science and technology of separation membranes, 2 volume set, vol 2. Wiley, London

    Book  Google Scholar 

  19. Gherrou A, Kerdjoudj H, Molinari R, Drioli E (2002) Removal of silver and copper ions from acidic thiourea solutions with a supported liquid membrane containing D2EHPA as carrier. Sep Purif Technol 28(3):235–244

    Article  CAS  Google Scholar 

  20. Kumbasar RA, Kasap S (2009) Selective separation of nickel from cobalt in ammoniacal solutions by emulsion type liquid membranes using 8-hydroxyquinoline (8-HQ) as mobile carrier. Hydrometallurgy 95(1):121–126

    Article  CAS  Google Scholar 

  21. Kondo K, Yamamoto Y, Matsumoto M (1997) Separation of indium (III) and gallium (III) by a supported liquid membrane containing diisostearylphosphoric acid as a carrier. J Membr Sci 137(1–2):9–15

    Article  CAS  Google Scholar 

  22. Hsu C-C, Tran TTV, Kumar SR, Lue SJ (2019) Transport of mixed ion mixtures through supported liquid membranes: co-ion and concentration effects on permeability. Korean J Chem Eng (submitted)

  23. Martí-Calatayud MC, García-Gabaldón M, Pérez-Herranz V, Ortega E (2011) Determination of transport properties of Ni(II) through a Nafion cation-exchange membrane in chromic acid solutions. J Membr Sci 379(1–2):449–458

    Article  Google Scholar 

  24. Izquierdo-Gil MA, Barragán VM, Villaluenga JPG, Godino MP (2012) Water uptake and salt transport through Nafion cation-exchange membranes with different thicknesses. Chem Eng Sci 72:1–9

    Article  CAS  Google Scholar 

  25. Sata T, Sata T, Yang W (2002) Studies on cation-exchange membranes having permselectivity between cations in electrodialysis. J Membr Sci 206(1–2):31–60

    Article  CAS  Google Scholar 

  26. Ozkorucuklu SP, Özdemir K, Kir E (2012) Preparation and transport properties of PPy/PVDF composite membrane. Polym Adv Technol 23(8):1202–1206

    Article  CAS  Google Scholar 

  27. Chemours (2019) Nafion™ Membranes, Extrusion-Cast. https://www.chemours.com/Nafion/en_US/index.html. Accessed 18 Jan 2019

  28. Krathumkhet N, Vongjitpimol K, Chuesutham T, Changkhamchom S, Phasuksom K, Sirivat A, Wattanakul K (2018) Preparation of sulfonated zeolite ZSM-5/sulfonated polysulfone composite membranes as PEM for direct methanol fuel cell application. Solid State Ion 319:278–284

    Article  Google Scholar 

  29. Lue SJ, Shih T-S, Wei T-C (2006) Plasma modification on a Nafion membrane for direct methanol fuel cell applications. Korean J Chem Eng 3(23):441–446

    Article  Google Scholar 

  30. Chen M, Ma J, Wang Z, Zhang X, Wu ZJRA (2017) Insights into iron induced fouling of ion-exchange membranes revealed by a quartz crystal microbalance with dissipation monitoring. RSC Adv 7(58):36555–36561

    Article  CAS  Google Scholar 

  31. Wang H, Wu C, Wu Y, Luo J, Xu T (2011) Cation exchange hybrid membranes based on PVA for alkali recovery through diffusion dialysis. J Membr Sci 376(1):233–240

    Article  CAS  Google Scholar 

  32. Hao J, Wu Y, Ran J, Wu B, Xu T (2013) A simple and green preparation of PVA-based cation exchange hybrid membranes for alkali recovery. J Membr Sci 433:10–16

    Article  CAS  Google Scholar 

  33. Lue SJ, Hsiaw S-Y, Wei T-C (2007) Surface modification of perfluorosulfonic acid membranes with perfluoroheptane (C7F16)/argon plasma. J Membr Sci 305(1–2):226–237

    Article  CAS  Google Scholar 

  34. Caprarescu S, Corobea MC, Purcar V, Spataru CI, Ianchis R, Vasilievici G, Vuluga ZJJoES (2015) San copolymer membranes with ion exchangers for Cu (II) removal from synthetic wastewater by electrodialysis. J Environ Sci 35:27–37

    Article  CAS  Google Scholar 

  35. Yeager HL, Steck A (1979) Ion-exchange selectivity and metal ion separations with a perfluorinated cation-exchange polymer. Anal Chem 51(7):862–865

    Article  CAS  Google Scholar 

  36. Yeager HL (1982) Cation exchange selectivity of a perfluorosulfonate membrane. In: Yeager HL, Eisenberg A (eds) Perfluorinated ionomer membranes, vol 180. American Chemical Society, Washington, pp 41–64

    Chapter  Google Scholar 

  37. Luo T, Abdu S, Wessling M (2018) Selectivity of ion exchange membranes: a review. J Membr Sci 555:429–454

    Article  CAS  Google Scholar 

  38. Wódzki R, Szczepanski P, Pawlowski MJPJoES (1999) Recovery of metals from electroplating waste solutions and sludge. Comp Donnan Dial Pertraction Tech 8:111–124

    Google Scholar 

  39. Ahmed MEI, Huang K-L, Holsen TM (2009) Nafion-117 Behavior during cation separation from spent chromium plating solutions. Ind Eng Chem Res 48(14):6805–6810

    Article  CAS  Google Scholar 

  40. Huang K-L, Holsen TM, Selman JR (2003) Impurity diffusion through Nafion and ceramic separators used for electrolytic purification of spent chromium plating solutions. J Membr Sci 221(1):135–146

    Article  CAS  Google Scholar 

  41. Iyer ST, Nandan D, Venkataramani B (1996) Alkaline earth metal ion-proton-exchange equilibria on Nafion-117 and Dowex 50W X8 in aqueous solutions at 298 ± 1 K. React Funct Polym 29(1):51–57

    Article  CAS  Google Scholar 

  42. Nightingale ER (1959) Phenomenological theory of ion solvation. Effective radii of hydrated ions. J Phys Chem 63(9):1381–1387

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by Chang Gung University Grant Number [BMRP326] and Chang Gung Memorial Hospital Grant Number [CMRPD2F0053].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shingjiang Jessie Lue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, CC., Tran, T., Kumar, S. et al. Highly permeable transition metal ions through perfluorosulfonate cation-exchange membrane. Polym. Bull. 76, 6257–6274 (2019). https://doi.org/10.1007/s00289-019-02716-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02716-z

Keywords

Navigation