Skip to main content
Log in

Rheological behavior of polypropylene/carbon quantum dot nanocomposites: the effects of particles size, particles/matrix interface adhesion, and particles loading

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The effects of nanoparticles size, nanoparticles/matrix interface adhesion, and nanoparticles loading on the rheological properties of polypropylene (PP)/carbon quantum dot (CQD) nanocomposites were investigated. The storage modulus of the samples was found to be raised with an increase in the volume fraction of CQDs up to 1 wt%. The addition of the compatibilizer had no significant effect on the storage and loss modulus of the samples; however, it resulted in the reduction in the viscosity at the lower frequencies. With increasing the CQDs size, the rise in the loss modulus was found to be greater than that of the storage modulus. The damping factor of the samples was lower for the smaller size nanoparticles at the lower frequencies. Also, the size of the nanoparticles had no significant effect on the complex viscosity of the samples. The storage modulus obtained from the Cohan model deviated the most from the experimental results for the samples containing various loadings of CQDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Daniel DJ, Panneerselvam K (2018) Mechanical properties of polypropylene nanocomposites: dispersion studies and modelling. Trans Indian Inst Met 71(1):225–230

    Article  CAS  Google Scholar 

  2. Bafana AP, Yan X, Wei X, Patel M, Guo Z, Wei S, Wujcik EK (2017) Polypropylene nanocomposites reinforced with low weight percent graphene nanoplatelets. Compos B 109:101–107

    Article  CAS  Google Scholar 

  3. Youssefi M, Safaie B (2013) Effect of multi walled carbon nanotube on the crystalline structure of polypropylene fibers. Fiber Polym 14(10):1602–1607

    Article  CAS  Google Scholar 

  4. Youssefi M, Safaie B (2018) The study on the mechanical properties of multi-walled carbon nanotube/polypropylene fibers. Fibers J Inst Eng (India): Ser E 99(1):37–42

    CAS  Google Scholar 

  5. Huang G, Wang S, Song Pa WuC, Chen S, Wang X (2014) Combination effect of carbon nanotubes with graphene on intumescent flame-retardant polypropylene nanocomposites. Compos A: Appl Sci Manuf 59:18–25

    Article  CAS  Google Scholar 

  6. Gloaguen J, Lefebvre J (2001) Plastic deformation behaviour of thermoplastic/clay nanocomposites. Polymer 42(13):5841–5847

    Article  CAS  Google Scholar 

  7. Rossetti R, Brus L (1982) Electron-hole recombination emission as a probe of surface chemistry in aqueous cadmium sulfide colloids. J Phys Chem 86(23):4470–4472

    Article  CAS  Google Scholar 

  8. Ekimov AI, Efros AL, Onushchenko AA (1985) Quantum size effect in semiconductor microcrystals. Solid State Commun 56(11):921–924

    Article  CAS  Google Scholar 

  9. Li H, Kang Z, Liu Y, Lee S-T (2012) Carbon nanodots: synthesis, properties and applications. J Mater Chem 22(46):24230–24253

    Article  CAS  Google Scholar 

  10. Luo PG, Sahu S, Yang S-T, Sonkar SK, Wang J, Wang H, LeCroy GE, Cao L, Sun Y-P (2013) Carbon “quantum” dots for optical bioimaging. J Mater Chem B 1(16):2116–2127

    Article  CAS  Google Scholar 

  11. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49(38):6726–6744

    Article  CAS  Google Scholar 

  12. Konwar A, Gogoi N, Majumdar G, Chowdhury D (2015) Green chitosan–carbon dots nanocomposite hydrogel film with superior properties. Carbohydr Polym 115:238–245

    Article  CAS  PubMed  Google Scholar 

  13. Yu L, Yue X, Yang R, Jing S, Qu L (2016) A sensitive and low toxicity electrochemical sensor for 2, 4-dichlorophenol based on the nanocomposite of carbon dots, hexadecyltrimethyl ammonium bromide and chitosan. Sens Actuator B: Chem 224:241–247

    Article  CAS  Google Scholar 

  14. Safaei B, Youssefi M, Rezaei B, Irannejad N (2018) Synthesis and properties of photoluminescent carbon quantum dot/polyacrylonitrile composite nanofibers. Smart Sci 6(2):117–124

    Article  Google Scholar 

  15. Huang Y, Liu J, Yu Y, Zuo S (2015) Preparation and multicolored fluorescent properties of CdTe quantum dots/polymethylmethacrylate composite films. J Alloys Compd 647:578–584

    Article  CAS  Google Scholar 

  16. Wang Q, Wang H, Liu D, Du P, Liu P (2017) Synthesis of flake-shaped nitrogen-doped carbon quantum dot/polyaniline (N-CQD/PANI) nanocomposites via rapid-mixing polymerization and their application as electrode materials in supercapacitors. Synth Met 231:120–126

    Article  CAS  Google Scholar 

  17. Zhang M, Yao Q, Lu C, Li Z, Wang W (2014) Layered double hydroxide-carbon dot composite: high-performance adsorbent for removal of anionic organic dye. ACS Appl Mater Interface 6(22):20225–20233

    Article  CAS  Google Scholar 

  18. Elias L, Fenouillot F, Majesté J-C, Alcouffe P, Cassagnau P (2008) Immiscible polymer blends stabilized with nano-silica particles: rheology and effective interfacial tension. Polymer 49(20):4378–4385

    Article  CAS  Google Scholar 

  19. Liu Z, Chen Y, Ding W (2016) Preparation, dynamic rheological behavior, crystallization, and mechanical properties of inorganic whiskers reinforced polylactic acid/hydroxyapatite nanocomposites. J Appl Polym 133(18):43381–43392

    Article  CAS  Google Scholar 

  20. Drzal LT, Rich MJ, Lloyd PF (1983) Adhesion of graphite fibers to epoxy matrices: I. the role of fiber surface treatment. J Adhes 16(1):1–30

    Article  CAS  Google Scholar 

  21. Du Y, Gao J, Yang J, Liu X (2012) Dynamic rheological behavior and mechanical properties of PVC/O-POSS nanocomposites. Polym-Plastic Technol Eng 51(9):920–925

    Article  CAS  Google Scholar 

  22. Karamipour S, Ebadi-Dehaghani H, Ashouri D, Mousavian S (2011) Effect of nano-CaCO3 on rheological and dynamic mechanical properties of polypropylene: experiments and models. Polym Test 30(1):110–117

    Article  CAS  Google Scholar 

  23. Majid M, Hassan E-D, Davoud A, Saman M (2011) A study on the effect of nano-ZnO on rheological and dynamic mechanical properties of polypropylene: experiments and models. Compos B 42(7):2038–2046

    Article  CAS  Google Scholar 

  24. Prashantha K, Soulestin J, Lacrampe M, Krawczak P, Dupin G, Claes M (2009) Masterbatch-based multi-walled carbon nanotube filled polypropylene nanocomposites: assessment of rheological and mechanical properties. Compos Sci Technol 69(11–12):1756–1763

    Article  CAS  Google Scholar 

  25. Sangroniz L, Palacios JK, Fernández M, Eguiazabal JI, Santamaria A, Müller AJ (2016) Linear and non-linear rheological behavior of polypropylene/polyamide blends modified with a compatibilizer agent and nanosilica and its relationship with the morphology. Eur Polym J 83:10–21

    Article  CAS  Google Scholar 

  26. Iqbal MZ, Abdala AA, Mittal V, Seifert S, Herring AM, Liberatore MW (2016) Processable conductive graphene/polyethylene nanocomposites: effects of graphene dispersion and polyethylene blending with oxidized polyethylene on rheology and microstructure. Polymer 98:143–155

    Article  CAS  Google Scholar 

  27. El Achaby M, Arrakhiz FE, Vaudreuil S, el Kacem Qaiss A, Bousmina M, Fassi-Fehri O (2012) Mechanical, thermal, and rheological properties of graphene-based polypropylene nanocomposites prepared by melt mixing. Polym Compos 33(5):733–744

    Article  CAS  Google Scholar 

  28. Fu S-Y, Feng X-Q, Lauke B, Mai Y-W (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos B 39(6):933–961

    Article  CAS  Google Scholar 

  29. Einstein A (1956) Investigations on the theory of brownian motion. Reprint of the 1st English edition (1926). Dover, New-York

    Google Scholar 

  30. Guth E (1945) Theory of filler reinforcement. J Appl Phys 16(1):20–25

    Article  CAS  Google Scholar 

  31. Joseph P, Mathew G, Joseph K, Groeninckx G, Thomas S (2003) Dynamic mechanical properties of short sisal fibre reinforced polypropylene composites. Compos A 34(3):275–290

    Article  CAS  Google Scholar 

  32. Mooney M (1951) The viscosity of a concentrated suspension of spherical particles. J coll Sci 6(2):162–170

    Article  CAS  Google Scholar 

  33. Landel RF, Nielsen LE (1993) Mechanical properties of polymers and composites. CRC Press, Boca Raton

    Google Scholar 

  34. Tung C, Dynes P (1987) Morphological characterization of polyetheretherketone–carbon fiber composites. J Appl Polym Sci 33(2):505–520

    Article  CAS  Google Scholar 

  35. Einstein A (1911) Berichtigung zu meiner Arbeit:„Eine neue Bestimmung der Moleküldimensionen”. Ann Phys 339(3):591–592

    Article  Google Scholar 

  36. Eilers VH (1941) Die viskosität von emulsionen hochviskoser stoffe als funktion der konzentration. Kolloid-Zeitschrift 97(3):313–321

    Article  CAS  Google Scholar 

  37. Safaie B, Youssefi M, Rezaei B (2018) Estimating the interphase properties of polypropylene/carbon quantum dot nanocomposite fibers by micromechanical modeling. Colloid Polym Sci. https://doi.org/10.1007/s00396-018-4422-8

    Article  Google Scholar 

  38. Dorigato A, Pegoretti A, Penati A (2010) Linear low-density polyethylene/silica micro-and nanocomposites: dynamic rheological measurements and modelling. Exp Polym Lett 4(2):115–129

    Article  CAS  Google Scholar 

  39. Kashi S, Gupta RK, Baum T, Kao N, Bhattacharya SN (2018) Phase transition and anomalous rheological behaviour of polylactide/graphene nanocomposites. Compos B 135:25–34

    Article  CAS  Google Scholar 

  40. Pötschke P, Fornes T, Paul D (2002) Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 43(11):3247–3255

    Article  Google Scholar 

  41. Van Puyvelde P, Velankar S, Moldenaers P (2001) Rheology and morphology of compatibilized polymer blends. Curr Opin Colloid Interface Sci 6:457–463

    Article  Google Scholar 

  42. Zhang JF, Yi XS (2002) Dynamic rheological behavior of high-density polyethylene filled with carbon black. J Appl Polym Sci 86(14):3527–3531

    Article  CAS  Google Scholar 

  43. Chuang HK, Han CD (1984) Rheological behavior of polymer blends. J Appl Polym Sci 29(6):2205–2229

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Youssefi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safaie, B., Youssefi, M. & Rezaei, B. Rheological behavior of polypropylene/carbon quantum dot nanocomposites: the effects of particles size, particles/matrix interface adhesion, and particles loading. Polym. Bull. 76, 4335–4354 (2019). https://doi.org/10.1007/s00289-018-2611-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2611-8

Keywords

Navigation