Skip to main content

Advertisement

Log in

Extrusion of Nafion and Aquivion membranes: environmentally friendly procedure and good conductivities

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The paper deals with an alternative energy technology used for the development of perfluorinated polymer membranes for fuel cells. This study has the aim to show some results we obtained using mechanical, rheological, and morphological analyses to get detailed structural information of extruded Nafion and Aquivion membranes suitable for fuel cell applications. Chemical and structural changes before and after annealing have been carefully monitored in order to describe the mechanical and the conductivity properties. The behavior of extruding Nafion and Aquivion membranes was studied and compared with that of the commercial ones. This study illustrates an enhancement of conductivity and mechanical properties for the extruded Nafion and Aquivion membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hiesgen R, Wehl I, Aleksandrova E, Roduner E, Bauder A, Friedrich KA (2010) Nanoscale properties of polymer fuel cell materials—a selected review. Int J Energy Res 34:1223–1238

    CAS  Google Scholar 

  2. Devanathan R, Venkatnathan A, Rousseau R, Dupuis M, Frigato T, Gu W, Helms V (2010) Atomistic simulation of water percolation and proton hopping in Nafion fuel cell membrane. J Phys Chem B 114(43):13681–13690

    Article  CAS  PubMed  Google Scholar 

  3. Di Noto V, Boaretto N, Negro E, Giffin GA, Lavina S, Polizzi S (2012) Inorganic-organic membranes based on Nafion, [(ZrO2)·(HfO2)0.25] and [(SiO2)·(HfO2)0.28]. Part I: synthesis, thermal stability and performance in a single PEMFC. Int J Hydrog Energy 37:6199–6214

    Article  CAS  Google Scholar 

  4. Larminie J, Dicks A (2003) Fuel cell systems explained. Wiley, New York

    Book  Google Scholar 

  5. Srinivasan S (2006) Fuel cells—from fundamentals to applications. Springer, New York

    Google Scholar 

  6. Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrog Energy 35:9349–9384

    Article  CAS  Google Scholar 

  7. Page KA, Cable KM, Moore RB (2005) Molecular origins of the thermal transitions and dynamic mechanical relaxations in perfluorosulfonate ionomers. Macromolecules 38(15):6472–6484

    Article  CAS  Google Scholar 

  8. Aleksandrova E (2012) Visualization of ionically active channels in the Nafion® membrane by using electrochemical atomic force microscopy. Institute fur Physikalishe Cheme der Universtat Stuttgart

  9. Eisenberg A, Yeager HL (eds) (1982) Perfluorinated ionomer membranes, ACS symposium series 180. American Chemical Society, Washington, DC

    Google Scholar 

  10. Schlick S (ed) (1996) Ionomers: characterization, theory and applications. CRC Press, Boca Raton

    Google Scholar 

  11. Gebel G (2000) Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution. Polymer 41:5829–5838

    Article  CAS  Google Scholar 

  12. Vogel C, Meier-Haack J (2014) Preparation of ion-exchange materials and membranes. Desalination 342:156–174

    Article  CAS  Google Scholar 

  13. Wieser C (2004) Novel polymer electrolytemembranes for automotive applications—requirements and benefits. Fuel Cells 4:245–250

    Article  CAS  Google Scholar 

  14. Kreuer KD, Schuster M, Obliers B, Diat O, Traub U, Fuchs A, Klock U, Paddison SJ, Maier J (2008) Short-side-chain proton conducting perfluorosulfonic acid ionomers: why they perform better in PEM fuel cells. J Power Sources 178:499–509

    Article  CAS  Google Scholar 

  15. Mohamed HFM, Kobayashi Y, Kuroda CS, Ohira A (2012) Positron trapping and possible presence of SO3H clusters in dry fluorinated polymer electrolyte membranes. Chem Phys Lett 544:49–52

    Article  CAS  Google Scholar 

  16. Roche EJ, Pineri M, Duplessix R (1982) Phase separation in perfluorsulfonate ionomer membranes. J Polym Sci 20:107–116

    CAS  Google Scholar 

  17. Lin J, Liu Y, Zhang QM (2011) Charge dynamics and bending actuation in Aquivion membrane swelled with ionic liquids. Polymer 52:540–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Baschetti MG, Minelli M, Catalano J, Sarti GC (2013) Gas permeation in perflurosulfonated membranes: influence of temperature and relative humidity. Int J Hydrog Energy 38:11973–11982

    Article  CAS  Google Scholar 

  19. Mauritz KA, Moore RB (2004) State of understanding of Nafion. Chem Rev 104(10):4535–4586

    Article  CAS  PubMed  Google Scholar 

  20. Matos BR, Goulart CA, Santiago E, Muccillo R, Fonseca FC (2014) Proton conductivity of perfluorosulfonate ionomers at high temperature and high relative humidity. Appl Phys Lett 104:091904

    Article  CAS  Google Scholar 

  21. Carrot C, Mbarek S, Jaziri M, Chalamet Y, Raveyre C, Prochazka F (2007) Immiscible blends of PC and PET, current knowledge and new results: rheological properties. Macromol Mater Eng 292:693–706

    Article  CAS  Google Scholar 

  22. Lehmani A, Durand-Vidal S, Turq P (1998) Surface morphology of Nafion 117 membrane by tapping mode atomic force microscope. J Appl Polym Sci 68(3):503–508

    Article  CAS  Google Scholar 

  23. Aleksandrova E, Hiesgen R, Friedrich KA, Roduner E (2007) Electrochemical atomic force microscopy study of proton conductivity in a Nafion membrane. Phys Chem Chem Phys 9:2735–2743

    Article  CAS  PubMed  Google Scholar 

  24. Feng S, Savage J, Voth GA (2012) Effects of polymer morphology on proton solvation and transport in proton-exchange membranes. J Phys Chem C 116(36):19104–19116

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaineb Baccouch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mbarek, S., El Kissi, N., Baccouch, Z. et al. Extrusion of Nafion and Aquivion membranes: environmentally friendly procedure and good conductivities. Polym. Bull. 76, 1151–1166 (2019). https://doi.org/10.1007/s00289-018-2427-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2427-6

Keywords

Navigation