Skip to main content
Log in

Insight into the synthesis and fabrication of 5,6-alt-benzothiadiazole-based D–π–A-conjugated copolymers for bulk-heterojunction solar cell

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Herein, two new 5,6-alt-benzothiadiazole-based Poly(o-arylene–vinylene) (POAV) type of D–π–A-conjugated copolymers, namely P1 and P2, have been synthesized using Horner–Wittig reaction and characterized by UV–Vis, 1H NMR, 13C NMR, and CV. With a deeper HOMO level of ≈ 5.95 eV, these two polymers have been used as donor with [6, 6]-phenyl C61-butyric acid methyl ester, PC61BM as an acceptor to fabricate solar cells with a device structure ITO/PEDOT:PSS/P1orP2-PCBM/Al or Ca:Al. Without annealing or use of additives, maximum V oc of 0.68, fill factor of 30.2%, quantum efficiency of 22%, and maximum power conversion efficiency (PCE) of 0.76% have been achieved with P2. Morphology of blended active layer, P1/P2 with PC61BM and PC71BM, has been investigated using AFM images.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brabec CJ, Durrant JR (2008) Solution-processed organic solar cells. MRS Bull 33:670–675

    Article  CAS  Google Scholar 

  2. Etxebarria I, Ajuria J, Pacios R (2015) Solution processable polymeric solar cells: a review on materials, strategies and cell architectures to overcome 10%. Org Electron 19:34–60

    Article  CAS  Google Scholar 

  3. Li Z, Tsang SW, Du X, Scoles L, Robertson G, Zhang Y, Toll F, Tao Y, Lu J, Ding J (2011) Alternating copolymers of cyclopenta[2,1-b;3,4-b′]dithiophene and thieno[3,4-c]pyrrole-4,6-dione for high-performance polymer solar cells. Adv Funct Mater 21:3331–3336

    Article  CAS  Google Scholar 

  4. Lu L, Zheng T, Wu Q, Schneider AM, Zhao D, Yu L (2015) Recent advances in bulk heterojunction polymer solar cells. Chem Rev 115:12666–12731

    Article  CAS  PubMed  Google Scholar 

  5. Brabec CJ, Sariciftci NS, Hummelen JC (2001) Plastic solar cells. Adv Funct Mater 11:15–26

    Article  CAS  Google Scholar 

  6. Yan J, Saunders BR (2014) Third generation solar cells: a review and comparison of polymer: fullerene, hybrid polymer and perovskite solar cells. RSC Adv 4:43286–43314

    Article  CAS  Google Scholar 

  7. Koch VP, Hezel R, Goetzberger A (2009) High efficient low cost photovoltaics. Springer, Berlin pp 180–220, ISSN 0342-4111

  8. Zhao W, Qian D, Zhang S, Li S, Inganäs O, Gao F, Hou J (2016) Fullerene free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv Mater 28:4734–4739

    Article  CAS  PubMed  Google Scholar 

  9. Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ (2006) Design rules for donors in bulk-heterojunction solar cells-towards 10% energy-conversion efficiency. Adv Mater 18:789–794

    Article  CAS  Google Scholar 

  10. Bijleveld JC, Shahid M, Gilot J, Wienk MM, Janssen RAJ (2009) Copolymers of cyclopentadithiophene and electron-deficient aromatic units designed for photovoltaic applications. Adv Funct Mater 19:3262–3270

    Article  CAS  Google Scholar 

  11. Tasch S, List EJW, Ekström O, Graupner W, Leising G, Schlichting P, Rohr U, Geerts Y, Scherf U, Müllen K (1997) Efficient white light-emitting diodes realized with new processable blends of conjugated polymers. Appl Phys Lett 71:2883–2885

    Article  CAS  Google Scholar 

  12. Liu J, Chen L, Shao S, Xie Z, Cheng Y, Geng Y, Wang L, Jing X, Wang F (2007) Three-color white electroluminescence from a single polymer system with blue, green and red dopant units as individual emissive species and polyfluorene as individual polymer host. Adv Mater 19:4224–4228

    Article  Google Scholar 

  13. Katz HE (2004) Recent advances in semiconductor performance and printing processes for organic transistor-based electronics. Chem Mater 16:4748–4756

    Article  CAS  Google Scholar 

  14. Liu D, Yang B, Jang B, Xu B, Zhang S, He C, Woo HY, Hou J (2017) Molecular design of a wide-band-gap conjugated polymer for efficient fullerene-free polymer solar cells. Energy Environ Sci 10:546–551

    Article  CAS  Google Scholar 

  15. Zhu D, Bao X, Zhu Q, Gu C, Qiu M, Wen S, Wang J, Shahida B, Yang R (2017) Thienothiophene-based copolymers for high-performance solar cells, employing different orientations of the thiazole group as a p bridge. Energy Environ Sci 10:614–620

    Article  CAS  Google Scholar 

  16. Wang X, Sun Y, Chen S, Guo X, Zhang M, Li X, Li Y, Wang H (2012) Effects of π-conjugated bridges on photovoltaic properties of donor–π–acceptor conjugated copolymers. Macromolecules 45:1208–1216

    Article  CAS  Google Scholar 

  17. Huang J, Zhao Y, Ding X, Jia H, Jiang B, Zhang Z, Zhan C, He S, Pei Q, Li Y, Liu Y, Yao J (2012) Synthesis and charge-transporting properties of electron-deficient CN2-fluorene based D–A copolymers. Polym Chem 3:2170–2177

    Article  CAS  Google Scholar 

  18. Xiao S, Stuart AC, Liu S, Zhou H, You W (2010) Conjugated polymer based on polycyclic aromatics for bulk heterojunction organic solar cells: a case study of quadrathienonaphthalene polymers with 2% efficiency. Adv Funct Mater 20:635–643

    Article  CAS  Google Scholar 

  19. Li P, Fenwick O, Yilmaz S, Breusov D, Caruana DJ, Allard S, Scherf U, Cacialli F (2011) Dual functions of a novel low-gap polymer for near infra-red photovoltaics and light-emitting diodes. Chem Commun 47:8820–8822

    Article  CAS  Google Scholar 

  20. Leclerc N, Michaud A, Sirois K, Morin JF, Leclerc M (2006) Synthesis of 2,7-carbazolenevinylene based copolymers and characterization of their photovoltaic properties. Adv Funct Mater 16:1694–1704

    Article  CAS  Google Scholar 

  21. Ko S, Mondal R, Risko C, Lee JK, Hong S, McGehee MD, Bredas JL, Bao Z (2010) Tuning the optoelectronic properties of vinylene-linked donor-acceptor copolymers for organic photovoltaics. Macromolecules 43:6685–6689

    Article  CAS  Google Scholar 

  22. Mei J, Heston NC, Vasilyeva SV, Reynolds JR (2009) A facile approach to defect-free vinylene-linked benzothiadiazole-thiophene low-bandgap conjugated polymers for organic electronics. Macromolecules 42:1482–1487

    Article  CAS  Google Scholar 

  23. Abbotto A, Seri M, Dangate MS, Angelis FD, Manfredi N, Mosconi E, Bolognesi M, Ruffo R, Salamone MM, Muccini M (2012) A vinylene-linked benzo[1,2-b:4,5-b’]dithiophene-2,1,3-benzothiadiazole low-bandgap polymer. J Polym Sci Part A Polym Chem 50:2829–2840

    Article  CAS  Google Scholar 

  24. Colladet K, Fourier S, Cleij TJ, Lutsen L, Gelan J, Vanderzande D (2007) Low band gap donor-acceptor conjugated polymers toward organic solar cells applications. Macromolecules 40:65–72

    Article  CAS  Google Scholar 

  25. David TMS, Arasho W, Sun SS (2015) Synthesis and structure-optoelectronic property relationships of a series of PPV and SFTV derived polymers. J Polym Sci Part A Polym Chem 53:2202–2213

    Article  CAS  Google Scholar 

  26. Grisorio R, Allegretta G, Romanazzi G, Suranna GP, Mastrorilli P, Mazzeo M, Cezza M, Carallo S, Gigli G (2012) An insight into the potential of random poly(heteroarylene–vinylene)s as donor materials in bulk heterojunction solar cells. Maromolecules 45:6396–6404

    Article  CAS  Google Scholar 

  27. Qing F, Sun Y, Wang X, Li N, Li Y, Li X, Wang H (2011) A novel poly(thienylenevinylene) derivative for application in polymer solar cells. Polym Chem 2:2102–2106

    Article  CAS  Google Scholar 

  28. Harris JD, Liu J, Carter KR (2015) Synthesis of π-bridged dually-dopable conjugated polymers from benzimidazole and fluorene: separating sterics from electronics. Macromolecules 48:6970–6977

    Article  CAS  Google Scholar 

  29. Liang X, Gu S, Cai Z, Sun W, Tan L, Dong L, Wang L, Liu Z, Chen W, Li J (2017) Multi-vinyl linked benzothiadiazole conjugated polymers: high performance, low crystalline material for transistors. Chem Commun 53:8176–8179

    Article  CAS  Google Scholar 

  30. Wu Z, Xiong Y, Zou J, Wang L, Liu J, Chen Q, Yang W, Peng J, Cao Y (2008) High-triplet-energy poly(9,9′-bis(2-ethylhexyl)-3,6-fluorene) as host for blue and green phosphorescent complexes. Adv Mater 20:2359–2364

    Article  CAS  Google Scholar 

  31. King SM, Perepichka II, Perepichka IF, Dias FB, Bryce MR, Monkman AP (2009) Exploiting a dual-fluorescence process in fluorene–dibenzothiophene-s, s-dioxide co-polymers to give efficient single polymer LEDs with broadened emission. Adv Funct Mater 19:586–591

    Article  CAS  Google Scholar 

  32. Inganäs O, Zhang F, Tvingstedt K, Andersson LM, Hellström S, Andersson MR (2010) Polymer photovoltaics with alternating copolymer/fullerene blends and novel device architectures. Adv Mater 22:E100–E116

    Article  CAS  PubMed  Google Scholar 

  33. Kulkarni AP, Zhu Y, Jenekhe SA (2005) Quinoxaline-containing polyfluorenes: synthesis, photophysics, and stable blue electroluminescence. Macromolecules 38:1553–1563

    Article  CAS  Google Scholar 

  34. Blouin N, Michaud A, Leclerc M (2007) A low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells. Adv Mater 19:2295–2300

    Article  CAS  Google Scholar 

  35. Niu YH, Huang J, Cao Y (2003) High-efficiency polymer light-emitting diodes with stable saturated red emission: use of carbazole-based copolymer blends in a poly (p-phenylenevinylene) derivative. Adv Mater 15:807–811

    Article  CAS  Google Scholar 

  36. Zou Y, Wan M, Sang G, Ye M, Li Y (2008) An alternative copolymer of carbazole and thieno[3,4b]-pyrazine: synthesis and mercury detection. Adv Funct Mater 18:2724–2732

    Article  CAS  Google Scholar 

  37. Liao L, Pang Y (2001) Synthesis, characterization and luminescence of poly[(m-phenylenevinylene)-alt-(1,4-dibutoxy-2,5-phenylenevinylene)] with different content of cis-and trans-olefins. Macromolecules 34:6756–6760

    Article  CAS  Google Scholar 

  38. Krebs FC, Jørgensen M (2002) Simple synthesis of monomers for regioregular poly(dialkylbiphenylenevinylene) conducting polymers through directional polymerization. Macromolecules 35:10233–10237

    Article  CAS  Google Scholar 

  39. Mathew SM, Engle JT, Ziegler CJ, Hartley CS (2013) The role of arene–arene interactions in the folding of ortho-phenylenes. J Am Chem Soc 135:6714–6722

    Article  CAS  PubMed  Google Scholar 

  40. Ito S, Takahashi K, Nozaki K (2014) Formal aryne polymerization: use of [2.2.1]oxabicyclic alkenes as aryne equivalents. J Am Chem Soc 136:7547–7550

    Article  CAS  PubMed  Google Scholar 

  41. He J, Mathew SM, Cornett SD, Grundy SC, Hartley CS (2012) ortho-phenylene oligomers with terminal push–pull substitution. Org Biomol Chem 10:3398–3405

    Article  CAS  PubMed  Google Scholar 

  42. Wu ZQ, Liu DF, Wang Y, Liu N, Yin J, Zhu YY, Qiu LZ, Ding YS (2013) One pot synthesis of a poly(3-hexylthiophene)-b-poly(quinoxaline-2,3-diyl) rod–rod diblock copolymer and its tunable light emission properties. Polym Chem 4:4588–4595

    Article  CAS  Google Scholar 

  43. Wang E, Hou L, Wang Z, Hellström S, Zhang F, Inganäs O, Andersson MR (2010) An easily synthesized blue polymer for high-performance polymer solar cells. Adv Mater 22:5240–5244

    Article  CAS  PubMed  Google Scholar 

  44. Hwang YJ, Courtright BAE, Ferreira AS, Tolbert SH, Jenekhe SA (2015) 7.7% Efficient all-polymer solar cells. Adv Mater 27:4578–4584

    Article  CAS  PubMed  Google Scholar 

  45. Mühlbacher D, Scharber M, Morana M, Zhu Z, Waller D, Gaudiana R, Brabec C (2006) High photovoltaic performance of a low-bandgap polymer. Adv Mater 18:2884–2889

    Article  Google Scholar 

  46. Burkhart B, Khlyabich PP, Thompson BC (2012) Influence of the ethylhexyl side-chain content on the open-circuit voltage in rr-poly(3-hexylthiophene-co-3-(2-ethylhexyl)thiophene) copolymers. Macromolecules 45:3740–3748

    Article  CAS  Google Scholar 

  47. Mierloo SV, Hadipour A, Spijkman MJ, Brande NVd, Kesters BRJ, D’Haen J, Assche GV, Leeuw DMD, Aernouts T, Manca J, Lutsen L, Vanderzande DJ, Maes W (2012) Improved photovoltaic performance of a semicrystalline narrow bandgap copolymer based on 4H-cyclopenta[2,1-b:3,4-b′]dithiophene donor and thiazolo[5,4-d]thiazole acceptor units. Chem Mater 24:587–593

    Article  CAS  Google Scholar 

  48. Liu J, Zhang R, Sauve G, Kowalewski T, McCullough RD (2008) Highly disordered polymer field effect transistors: N-alkyl dithieno[3,2-b:2′,3′-d]pyrrole-based copolymers with surprisingly high charge carrier mobilities. J Am Chem Soc 130:13167–13176

    Article  CAS  PubMed  Google Scholar 

  49. Lu K, Di CA, Xi H, Liu Y, Yu G, Qiu W, Zhang H, Gao X, Liu Y, Qi T, Du C, Zhu D (2008) Novel copolymers incorporating dithieno[3,2-b:2′,3′-d]thiophene moieties for air-stable and high performance organic field-effect transistors. J Mater Chem 18:3426–3432

    Article  CAS  Google Scholar 

  50. Armarego WLF, Perrin DD (2002) Purification of laboratory chemicals. Butterworth-Heinemann, Burlington

    Google Scholar 

  51. Bard AJ, Faulkner LA (1984) Electrochemical methods–fundamentals and applications. Wiley, New York

    Google Scholar 

  52. Speros JC, Paulsen BD, Slowinski BS, Frisbie CD, Hillmyer MA (2012) Band gap and HOMO level control in poly(thienylene vinylene)s prepared by ADMET polymerization. ACS Macro Lett 1:986–990

    Article  CAS  Google Scholar 

  53. Neidlein R, Knecht D (1987) Bromierung methylsubstituierter 2,1,3-benzothiadiazole und 2,1,3-benzoselenadiazole. Chem Ber 120:1593–1595

    Article  CAS  Google Scholar 

  54. Tsai FC, Chang CC, Liu CL, Chen WC, Jenekhe SA (2005) New thiophene-linked conjugated poly(azomethine)s: theoretical electronic structure, synthesis, and properties. Macromolecules 38:1958–1966

    Article  CAS  Google Scholar 

  55. Padhy H, Sahu D, Patra D, Pola MK, Huang JH, Chu CW, Wei KH, Lin HC (2011) Synthesis and applications of cyano-vinylene-based polymers containing cyclopentadithiophene and dithienosilole units for photovoltaic cells. J Polym Sci Part A Polym Chem 49:3417–3425

    Article  CAS  Google Scholar 

  56. Abdo NI, Ku J, Shehawy AAE, Shim HS, Min JK, Barbary AAE, Jang YH, Lee JS (2013) Synthesis and characterization of low band gap π-conjugated copolymers incorporating 4,7-bis(3,3′/4,4′-hexylthiophene-2-yl)benzo[c][2,1,3]thiadiazole units for photovoltaic application. J Mater Chem A 1:10306–10317

    Article  CAS  Google Scholar 

  57. Gunbas GE, Durmus A, Toppare L (2008) Could green be greener? Novel donor–acceptor-type electrochromic polymers: towards excellent neutral green materials with exceptional transmissive oxidized states for completion of RGB color space. Adv Mater 20:691–695

    Article  CAS  Google Scholar 

  58. Liu C, Wang K, Hu X, Yang Y, Hsu CH, Zhang W, Xiao S, Gong X, Cao Y (2013) Molecular weight effect on the efficiency of polymer solar cells. ACS Appl Mater Interfaces 5:12163–12167

    Article  CAS  PubMed  Google Scholar 

  59. Hou J, Tan Z, He Y, Yang C, Li Y (2006) Branched poly(thienylene vinylene)s with absorption spectra covering the whole visible region. Macromolecules 39:4657–4662

    Article  CAS  Google Scholar 

  60. Phelan NF, Orchin M (1968) Cross conjugation. J Chem Educ 45:633–637

    Article  CAS  Google Scholar 

  61. Pruissen GWPV, Brebels J, Hendriks KH, Wienk MM, Janssen RAJ (2015) Effects of cross-conjugation on the optical absorption and frontier orbital levels of donor-acceptor polymers. Macromolecules 48:2435–2443

    Article  CAS  Google Scholar 

  62. Fan M, Du Z, Chen W, Liu D, Wen S, Sun M, Yang E (2016) Benzodithiophene-based polymers containing alkylthiophenyl side chains with lowered HOMO energy levels for organic solar cells. Asian J Org Chem 5:1273–1279

    Article  CAS  Google Scholar 

  63. Gündüza B, Turan N, Kaya E, Colak N (2013) The photo-electrical properties of the p-Si/Fe(II)–polymeric, complex/Au diode. Synth Met 184:73–82

    Article  CAS  Google Scholar 

  64. Wetzelaer GJAH, Blom PWM (2017) Diffusion-driven currents in organic-semiconductor diodes. NPG Asia Mater 6:e110. doi:10.1038/am.2014.4

    Article  CAS  Google Scholar 

  65. Chiu CY, Wang H, Phan H, Shiratori K, Nguyen TQ, Hawker CJ (2016) Twisted olefinic building blocks for low bandgap polymers in solar cells and ambipolar field-effect transistors. J Polym Sci Part A Polym Chem 54:889–899

    Article  CAS  Google Scholar 

  66. Li Y, Chen Y, Liu X, Wang Z, Yang X, Tu Y, Zhu X (2011) Controlling blend film morphology by varying alkyl side chain in highly coplanar donor–acceptor copolymers for photovoltaic application. Macromolecules 44:6370–6381

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Science and Technology, India (No. SR/S1/PC-02/2009, DST/TSG/PT/2009/11 and DST/TSG/PT/2009/23) and IGSTC/MPG/PG(PKI)/2011A/48. Radhakrishna Ratha thanks UGC-India for financial support. The Central Instruments Facility, IIT Guwahati, is acknowledged for instrument facility. Funding was provided by Department of Electronics and Information Technology, Ministry of Communications and Information Technology (Grant No. 5(9)/2012-NANO (Vol. II))

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parameswar Krishnan Iyer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5539 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ratha, R., Singh, A., Raju, T.B. et al. Insight into the synthesis and fabrication of 5,6-alt-benzothiadiazole-based D–π–A-conjugated copolymers for bulk-heterojunction solar cell. Polym. Bull. 75, 2933–2951 (2018). https://doi.org/10.1007/s00289-017-2193-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2193-x

Keywords

Navigation