Skip to main content
Log in

Modified Nypa fruticans regenerated cellulose biocomposite films using acrylic acid

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The effect of Nypa fruticans (NF) content and acrylic acid on tensile properties, X-ray diffraction, thermogravimetric analysis, and morphology of NF regenerated cellulose (RC) biocomposite films was studied. NF RC biocomposite films were produced by dissolving NF and microcrystalline cellulose in the mixture of N,N-dimethylacetamide (DMAc)/lithium chloride. The result found that the addition of NF increased the tensile strength and Young’s modulus, but reduced the elongation at break of the NF RC biocomposite films. The crystallinity index, thermal stability, moisture content, and weight loss of enzymatic biodegradation of the NF RC biocomposite films also improved as the NF content increases. The presence of NF modified with acrylic acid exhibits higher tensile strength, Young’s modulus, and elongation at break compared to unmodified NF RC biocomposite films. The crystallinity index, thermal stability, moisture resistivity, and stability towards enzymatic biodegradation of the NF RC biocomposite films increased after modification with AA. The improvement of filler–matrix adhesion was verified by SEM study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641. doi:10.1016/j.progpolymsci.2003.08.002

    Article  CAS  Google Scholar 

  2. Vroman L, Tighzert L (2006) Biodegradable polymers. Materials 2:307–344. doi:10.3390/ma2020307

    Article  Google Scholar 

  3. Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS (2010) Cellulose crystallinity—a key predictor of the enzymatic hydrolysis rate. FEBS J 277:1571–1582. doi:10.1111/j.1742-4658.2010.07585.x

    Article  CAS  Google Scholar 

  4. Chauve M, Barre L, Tapin-Lingua S, da Silva Perez D, Decottignies D, Perez S, Ferreira NL (2013) Evolution and impact of cellulose architecture during enzymatic hydrolysis by fungal cellulases. Adv Biosci Biotech 4:1095. doi:10.4236/abb.2013.412146

    Article  Google Scholar 

  5. Yue Y, Han G, Wu Q (2013) Transitional properties of cotton fibers from cellulose I to cellulose II structure. BioResources 8:6460–6471. doi:10.15376/biores.8.4.6460-6471

    Article  Google Scholar 

  6. Bajpai P (2016) Structure of lignocellulosic biomass. In: Pretreatment of lignocellulosic biomass for biofuel production. SpringerBriefs in molecular science, pp 7–12. doi:10.1007/978-981-10-0687-6_2

  7. Jiang GS, Huang WF, Li L, Wang X, Pang FJ, Zhang YM, Wang H (2012) Structure and properties of regenerated cellulose fibers from different technology processes. Carbohydrat Polym 87:2012–2018. doi:10.1016/j.carbpol.2011.10.022

    Article  CAS  Google Scholar 

  8. Lan W, Liu CF, Yue FX, Sun RC, Kennedy JF (2011) Ultrasound-assisted dissolution of cellulose in ionic liquid. Carbohydrat Polym 86:672–677. doi:10.1016/j.carbpol.2011.05.013

    Article  CAS  Google Scholar 

  9. Mahmoudian S, Wahit MU, Ismail AF, Yussuf AA (2012) Preparation of regenerated cellulose/montmorillonite nanocomposite films via ionic liquids. Carbohydrat Polym 88:1251–1257. doi:10.1016/j.carbpol.2012.01.088

    Article  CAS  Google Scholar 

  10. Zhang XM, Liu XQ, Zheng WG, Zhu J (2012) Regenerated cellulose/graphene nanocomposite films prepared in DMAC/LiCl solution. Carbohydrat Polym 88:26–30. doi:10.1016/j.carbpol.2011.11.054

    Article  CAS  Google Scholar 

  11. Purwandari FA, Sanjaya AP, Millati R, Cahyanto MN, Horváth IS, Niklasson C, Taherzadeh MJ (2013) Pretreatment of oil palm empty fruit bunch (OPEFB) by N-methylmorpholine-N-oxide (NMMO) for biogas production: structural changes and digestion improvement. Bioresource Tech 128:461–466. doi:10.1016/j.biortech.2012.10.088

    Article  CAS  Google Scholar 

  12. Jiang M, Zhao M, Zhou Z, Huang T, Chen X, Wang Y (2011) Isolation of cellulose with ionic liquid from steam exploded rice straw. Ind Crop Prod 33:734–738. doi:10.1016/j.indcrop.2011.01.015

    Article  CAS  Google Scholar 

  13. Wang L, Gao L, Cheng B, Ji X, Song J, Lu F (2014) Rheological behaviors of cellulose in 1-ethyl-3-methylimidazolium chloride/dimethylsulfoxide. Carbohydrat Polym 110:292–297. doi:10.1016/j.carbpol.2014.03.091

    Article  CAS  Google Scholar 

  14. Kuo CH, Lee CK (2009) Enhancement of enzymatic saccharification of cellulose by cellulose dissolution pretreatments. Carbohydrat Polym 77:41–46. doi:10.1016/j.carbpol.2008.12.003

    Article  CAS  Google Scholar 

  15. Han J, Zhou C, Frenc AD, Han G, Wu Q (2013) Characterization of cellulose II nanoparticles regenerated from 1-butyl-3-methylimidazolium chloride. Carbohydrat Polym 94:773–781. doi:10.1016/j.carbpol.2013.02.003

    Article  CAS  Google Scholar 

  16. Xu S, Zhang J, He A, Li J, Zhang H, Han CC (2008) Electrospinning of native cellulose from nonvolatile solvent system. Polymer 49:2911–2917. doi:10.1016/j.polymer.2008.04.046

    Article  CAS  Google Scholar 

  17. Rahatekar SS, Rasheed A, Jain R, Zammarano M, Koziol KK, Windle AH, Kumar S (2009) Solution spinning of cellulose carbon nanotube composites using room temperature ionic liquids. Polymer 50:4577–4583. doi:10.1016/j.polymer.2009.07.015

    Article  CAS  Google Scholar 

  18. Song HZ, Luo ZQ, Wang CZ, Hao XF, Gao JG (2013) Preparation and characterization of bionanocomposite fiber based on cellulose and nano-SiO2 using ionic liquid. Carbohydrat Polym 98:161–167. doi:10.1016/j.carbpol.2013.05.079

    Article  CAS  Google Scholar 

  19. Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150. doi:10.1039/B006677J

    Article  CAS  Google Scholar 

  20. Rinaldi R (2011) Instantaneous dissolution of cellulose in organic electrolyte solutions. Chem Comm 47:511–513. doi:10.1039/C0CC02421J

    Article  CAS  Google Scholar 

  21. Isik M, Sardon H, Mecerreyes D (2014) Ionic liquids and cellulose: dissolution, chemical modification and preparation of new cellulosic materials. Int J Molec Sci 15:11922–11940. doi:10.3390/ijms150711922

    Article  CAS  Google Scholar 

  22. Zhang Y, Xu A, Lu B, Li Z, Wang J (2015) Dissolution of cellulose in 1-allyl-3-methylimizodalium carboxylates at room temperature: a structure–property relationship study. Carbohydrat Polym 117:666–672. doi:10.1016/j.carbpol.2014.08.101

    Article  CAS  Google Scholar 

  23. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Amer Chem Soc 124:4974–4975. doi:10.1021/ja025790m

    Article  CAS  Google Scholar 

  24. Moulthrop JS, Swatloski RP, Moyna G, Rogers RD (2005) High-resolution 13C NMR studies of cellulose and cellulose oligomers in ionic liquid solutions. Chem Comm 12:1557–1559. doi:10.1039/B417745B

    Article  Google Scholar 

  25. Badgujar KC, Bhanage BM (2015) Factors governing dissolution process of lignocellulosic biomass in ionic liquid: current status, overview and challenges. Bioresource Techn 178:2–18. doi:10.1016/j.biortech.2014.09.138

    Article  CAS  Google Scholar 

  26. El Seoud OA, Koschella A, Fidale LC, Dorn S, Heinze T (2007) Applications of ionic liquids in carbohydrate chemistry: a window of opportunities. Biomacromol 8:2629–2647. doi:10.1021/bm070062i

    Article  Google Scholar 

  27. Ramos LP (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Quim Nova 26:863–871. doi:10.1590/S0100-40422003000600015

    Article  CAS  Google Scholar 

  28. Gindl W, Gupta HS, Schöberl T, Lichtenegger HC, Fratzl P (2004) Mechanical properties of spruce wood cell walls by nanoindentation. App Phys A 79:2069–2073. doi:10.1007/s00339-004-2864-y

    Article  CAS  Google Scholar 

  29. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393. doi:10.1002/anie.200460587

    Article  CAS  Google Scholar 

  30. Erdmenger T, Haensch C, Hoogenboom R, Schubert U (2007) Homogeneous trytilation of cellulose in 1-butyl-3-methylimidazolium chloride. Macromol Biosci 7:440–445. doi:10.1002/mabi.200600253

    Article  CAS  Google Scholar 

  31. Kohler S, Liebert T, Heinze T (2008) Interactions of ionic liquids with polysaccharides. VI. Pure cellulose nanoparticles from trimethylsilyl cellulose synthesized in ionic liquids. J Polym Sci A Polym Chem 46:4070–4080. doi:10.1002/pola.22749

    Article  Google Scholar 

  32. Liebert T, Hansch C, Heinze T (2006) Click chemistry with polysaccharides. Macromol Rapid Commun 27:208–213. doi:10.1002/marc.200500686

    Article  CAS  Google Scholar 

  33. Song Y, Sun Y, Zhang X, Zhou J, Zhang L (2008) Homogeneous quaternization of cellulose in NaOH/urea aqueous solutions as gene carriers. Biomacromol 9:2259–2264. doi:10.1021/bm800429a

    Article  CAS  Google Scholar 

  34. Park JM, Kim PG, Jang JH, Wang Z, Hwang BS, DeVries KL (2008) Interfacial evaluation and durability of modified Jute fibers/polypropylene (PP) composites using micromechanical test and acoustic emission. Compos B 39:1042–1061. doi:10.1016/j.compositesb.2007.11.004

    Article  Google Scholar 

  35. Govindan V, Husseinsyah S, Leng TP, Zakaria MM, Tanjung FA (2015) Regenerated cellulose/Nypa fruticans fiber biocomposite films using ionic liquid. App Mech Mater 754:266–270. doi:10.4028/www.scientific.net/AMM.754-755.266

    Article  Google Scholar 

  36. Govindan V, Hussiensyah S, Leng TP, Amri F (2014) Preparation and characterization of regenerated cellulose using ionic liquid. Adv Env Bio 8:2620–2625

    CAS  Google Scholar 

  37. Ramaraj B (2007) Crosslinked poly (vinyl alcohol) and starch composite films. II: physicomechanical, thermal properties and swelling studies. J Appl Polym Sci 103:909–916. doi:10.1002/app.25237

    Article  CAS  Google Scholar 

  38. Lavengood RE, Nicolais L, Narkis MA (1973) Deformational mechanism in particulate-filled glassy polymers. J Appl Polym Sci 17:1173–1185. doi:10.1002/app.1973.070170414

    Article  Google Scholar 

  39. Nielsen LE (1966) Simple theory of stress-strain properties of filled polymers. J Appl Polym Sci 10:97–103. doi:10.1002/app.1966.070100107

    Article  CAS  Google Scholar 

  40. Yeng CM, Husseinsyah S, Ting SS (2015) A comparative study of different crosslinking agent-modified chitosan/corn cob biocomposite films. Polym Bull 72:791–808. doi:10.1007/s00289-015-1305-8

    Article  CAS  Google Scholar 

  41. French AD, Santiago Cintrón M (2012) Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 20:583–588. doi:10.1007/s10570-012-9833-y

    Article  Google Scholar 

  42. Husseinsyah S, Yeng CM, Kassim AR, Zakaria MM, Ismail H (2014) Kapok husk-reinforced soy protein isolate biofilms: tensile properties and enzymatic hydrolysis. BioRes 9:5636–5651. doi:10.15376/biores.9.3.5636-5651

    Article  Google Scholar 

  43. Husseinsyah S, Amri F, Husin K, Ismail H (2011) Mechanical and thermal properties of chitosan-filled polypropylene composites: the effect of acrylic acid. J Vinyl Addit Techn 17:125–131. doi:10.1002/vnl.20268

    Article  CAS  Google Scholar 

  44. Govindan V, Husseinsyah S, Leng TP (2016) Treated Nypa fruticans husk-filled regenerated cellulose biocomposite films. BioRes 11:8739–8755

    Article  CAS  Google Scholar 

  45. Zare Y (2016) Development of Nicolais–Narkis model for yield strength of polymer nanocomposites reinforced with spherical nanoparticles. Int J Adhes Adhes 70:191–195. doi:10.1016/j.ijadhadh.2016.07.006

    Article  CAS  Google Scholar 

  46. Mahmoudian S, Wahit MU, Ismail AF, Yussuf AA (2012) Preparation of regenerated cellulose/montmorillonite nanocomposite films via ionic liquids. Carbohydrat Polym 88:1251–1257. doi:10.1016/j.carbpol.2012.01.088

    Article  CAS  Google Scholar 

  47. Yeng CM, Husseinsyah S, Ting SS (2013) Modified corn cob filled chitosan biocomposite films. Polym Plast Tech Eng 52:1496–1502. doi:10.1080/03602559.2013.820752

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaniespree Govindan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govindan, V., Husseinsyah, S. & Leng, T.P. Modified Nypa fruticans regenerated cellulose biocomposite films using acrylic acid. Polym. Bull. 74, 4745–4762 (2017). https://doi.org/10.1007/s00289-017-1982-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-1982-6

Keywords

Navigation