Skip to main content
Log in

Effect of green coupling agent from waste oil fatty acid on the properties of polypropylene/cocoa pod husk composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Green coupling agent (GCA) made from waste oil fatty acid was used as an effective coupling agent for polypropylene (PP)/cocoa pod husk (CPH) composites. The results indicated that the incorporation of 0.5 phr of GCA shows a remarkable improvement on tensile strength, elongation at break and tensile modulus of PP/CPH composites. The composites with GCA also exhibited a higher crystallinity and thermal stability as well as water resistivity. The addition of GCA improved the filler dispersion and interfacial adhesion between PP and CPH. Moreover, some properties of PP/CPH composites with GCA are better compared to PP/CPH composites with MAPP or MAA. This outcome implied that GCA could be a potential coupling agent for thermoplastic composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chun KS, Husseinsyah H, Osman H (2013) Modified cocoa pod husk-filled polypropylene composites by using methacrylic acid. BioResour 8:3260–3275. doi:10.15376/biores.8.3.3260-3275

    Google Scholar 

  2. Chun KS, Husseinsyah S, Osman H (2015) Utilization of cocoa pod husk as filler in polypropylene biocomposites: effect of maleated polypropylene. J Thermoplast Compos Mater 28:1507–1521. doi:10.1177/0892705713513291

    Article  CAS  Google Scholar 

  3. Chun KS, Husseinsyah S, Osman H (2013) Tensile properties of polypropylene/cocoa pod husk biocomposites: effect of maleated polypropylene. Adv Mater Res 747:645–648. doi:10.4028/www.scientific.net/AMR.747.645

    Article  CAS  Google Scholar 

  4. Lucia CM, Renata Dias DMCA, Carmen Lucia DOP (2001) Cacao pod husks (Theobroma cocoa l.): composition and hot-water-soluble. Ind Crop Prod 34:1173–1181. doi:10.1016/j.indcrop.2011.04.004

    Google Scholar 

  5. Chun KS, Husseinsyah S, Yeng CM (2015) Torque rheological properties of polypropylene/cocoa pod husk composites. J Thermoplast Compos Mater. doi:10.1177/0892705715618743

    Google Scholar 

  6. Ljunberg Lennart Y (2007) Materials selection and design for development of sustainable products. Mater Des 28:466–479. doi:10.1016/j.matdes.2005.09.006

    Article  Google Scholar 

  7. Abdul Khalil HPS, Issam AM, Ahmad Shakri MT, Suriani R, Awang AY (2007) Conventional agro-composites from chemically modified fibres. Ind Crop Prod 26:315–323. doi:10.1016/j.indcrop.2007.03.010

    Article  CAS  Google Scholar 

  8. Kabir MM, Wang H, Lau KT, Cardona F (2012) Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos Part B 43:2883–2892. doi:10.1016/j.compositesb.2012.04.053

    Article  CAS  Google Scholar 

  9. Bledzki AK, Reihmane S, Gassan J (1998) Thermoplastic reinforced with wood fillers: a literature review. Polym Plast Technol Eng 37:451–468. doi:10.1080/03602559808001373

    Article  CAS  Google Scholar 

  10. Fronaco HPJ, Gozalez VAA (2005) A study of the mechanical properties of short natural-fiber reinforced composites. Compos Part B 36:597–608. doi:10.1016/j.compositesb.2005.04.001

    Article  Google Scholar 

  11. Jae GG, Sun YL, Sang JC, Geum HD, Jung HK (2010) Effect of chemical treatment of hybrid fillers on the physical and thermal properties of wood plastic composites. Compos Part A 41:1491–1497. doi:10.1016/j.compositesa.2010.06.011

    Article  Google Scholar 

  12. Chun KS, Husseinsyah S, Osman H (2013) Properties of coconut shell powder-filled polylactic acid ecocomposites: effect of maleic acid. Polym Eng Sci 53:1109–1116. doi:10.1002/pen.23359

    Article  CAS  Google Scholar 

  13. Salmah H, Koay SC, Hakimah O (2013) Surface modification of coconut shell powder filled polylactic acid biocomposites. J Thermoplast Compos Mater 26:809–819. doi:10.1177/0892705711429981

    Article  CAS  Google Scholar 

  14. Rahman R, Hasan M, Huque M, Islam N (2009) Physico-mechanical properties of melaic acid post treated jute fiber reinforced polypropylene composites. J Thermoplast Compos Mater 22:2945–2955. doi:10.1177/0892705709100664

    Article  Google Scholar 

  15. Xie Y, Hill CAS, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos Part 41:806–819. doi:10.1016/j.compositesa.2010.03.005

    Article  Google Scholar 

  16. Chun KS, Husseinsyah S, Osman H (2012) Mechanical and thermal properties of coconut shell powder filled polylactic acid biocomposites: effect of the filler content and silane coupling agent. J Polym Res 19:1–8. doi:10.1007/s10965-012-9859-8

    Article  CAS  Google Scholar 

  17. Raj RG, Kokta BV, Daneault GG (1990) The influence of coupling agent on mechanical properties of composites containing cellulosic filler. Polym Plast Technol Eng 29:339–353. doi:10.1080/03602559008049849

    Article  CAS  Google Scholar 

  18. Salmah H, Ismail H (2008) The effect of filler loading and meleated polypropylene on properties of rubber wood filled polypropylene/natural rubber composites. J Reinf Plast Compos 27:1867–1876. doi:10.1177/0731684407081382

    Article  CAS  Google Scholar 

  19. Sombatsompop N, Yotinwattanakumtorn C, Thongpin C. Influence of type and concentration of maleic anhydride grafted polypropylene and impact modifiers on mechanical properties of PP/wood sawdust composites. J Appl Polym Sci 97:475–484. doi:10.1002/app.21765

  20. Danyadi L, Janecska T, Szabo Z, Nagy G, Moczo J, Pukanszky B (2007) Wood flour filled PP composites: compatibilization and adhesion. Compos Sci Technol 67:2838–2846. doi:10.1016/j.compscitech.2007.01.024

    Article  CAS  Google Scholar 

  21. Koay SC, Salmah H, Azizi FN (2013) Characterization and properties of recycled polypropylene/coconut shell powder composites: effect of sodium dodecyl sulphate modification. Polym Plast Technol Eng 52:287–294. doi:10.1080/03602559.2012.749282

    Article  Google Scholar 

  22. Chun KS, Husseinsyah S (2012) Polylactic acid/corn cob eco-composites: effect of new organic coupling agent. J Thermoplast Compos Mater 27:1667–1678. doi:10.1177/0892705712475008

    Article  Google Scholar 

  23. Salmah H, Chun KS, Akmal H, Romisuhani A (2014) Effect of filler loading and coconut oil coupling agent on properties of low density polyethylene and palm kernel shell eco-composites. J Vinly Add Technol. doi:10.1002/vnl.21423

    Google Scholar 

  24. Danyadi L, Moczo J, Pukanszky B (2010) Effect of various surface modification of wood flour on the properties of PP/wood composites. Compos Part A 41:199–206. doi:10.1016/j.compositesa.2009.10.008

    Article  Google Scholar 

  25. Raj RG, Kokta BV (1989) Compounding of cellulose fibers with polypropylene: effect of fiber treatment on dispersion in the polymer matrix. J Appl Polym Sci 38:1987–1996. doi:10.1002/app.1989.070381103

    Article  CAS  Google Scholar 

  26. Suryadiansyah IH, Azhari B (2007) Waste paper filled polypropylene composites: the comparison effect of ethylene diamine dilaurate as a new compatibilizer with maleic anhydride polypropylene. J Reinf Plast Compos 26:51–67. doi:10.1177/0731684407069953

    Article  CAS  Google Scholar 

  27. Rahman WAWA, Lee TS, Rahmat AR, Isa NM, Salleh MSN, Mokhtar M (2010) Comparison of rice husk-filled polyethylene composite and natural wood under weathering effects. J Compos Mater 45:1403–1410. doi:10.1177/0021998310381545

    Article  Google Scholar 

  28. ASTM Standard D638 (2010) Standard test method for tensile properties of plastics. ASTM International, West Conshohocken, PA. doi:10.1520/D0638-10

  29. ASTM Standard D570 (2010) Standard test method for water absorption of plastics. ASTM International, West Conshohocken, PA. doi:10.1520/D0570-98R10E01

  30. Demjen Z, Pukanszky B (1997) Effect of surface coverage of silane treated CaCO3 on the tensile properties of polypropylene composites. Polym Compos 18:741–747. doi:10.1002/pc.10326

    Article  CAS  Google Scholar 

  31. Jandas PJ, Mohanty S, Nayak SK, Srivastave H (2011) Effect of surface treatment of banana fiber on mechanical, thermal, and biodegradability properties of PLA/banana fiber biocomposites. Polym Compos 32:1689–1700. doi:10.1002/pc.21165

    Article  CAS  Google Scholar 

  32. Lu JZ, Wu Q, Negulescu II (2005) Wood-fiber/high-density-polyethylene composites: coupling agent performance. J Appl Polym Sci 96:93–102. doi:10.1002/app.21410

    Article  CAS  Google Scholar 

  33. Pukánszky B (1990) Influence of interface interaction on the ultimate tensile properties of polymer composites. Compos 21:255–262. doi:10.1016/0010-4361(90)90240-W

    Article  Google Scholar 

  34. Danyadi L, Renner K, Moczo J, Pukánszky B (2007) Wood flour filled polypropylene composites: interfacial adhesion and micromechanical deformations. Polym Eng Sci 47:1246–1255. doi:10.1002/pen.20768

    Article  CAS  Google Scholar 

  35. Chindaprasirt P, Hiziroglu S, Waisurasingha C, Kasemsiri P (2014) Properties of wood flour/expanded polystyrene waste composites modified with diammonium phosphate flame retardant. Polym Compos 36:604–612. doi:10.1022/pc.22977

    Article  Google Scholar 

  36. Zhao Y, Qiu J, Feng H, Zhang M (2012) The interfacial modification of rice straw fiber reinforced poly(butylene succinate) composites: effect of aminosilane with different alkoxy groups. J Appl Polym Sci 125:3211–3220. doi:10.1002/app.36502

    Article  CAS  Google Scholar 

  37. George J, Bhagawan SS, Thomas S (1998) Effect of environment on the properties of low-density polyethylene composites reinforced with pineapple-leaf fiber. Compos Sci Technol 58:1471–1485. doi:10.1016/S0266-3538(97)00161-9

    Article  CAS  Google Scholar 

  38. Kushwaha PK, Kumar R (2010) Studies on water absorption of bamboo-polyester composites: effect of silane treatment of mercerized bamboo. Polym Plast Technol Eng 49:45–52

    Article  CAS  Google Scholar 

  39. Ayrilmis N, Kaymakci A (2013) Fast growing biomass as reinforcing filler in thermoplastic composites: paulownia elongata wood. Ind Corp Prod 43:457–468. doi:10.1080/03602550903283026

    Article  CAS  Google Scholar 

  40. Arbelaiz A, Fernandez B, Ramos JA, Mandragon I (2006) Thermal and crystallization studies of short flax fibre reinforced polypropylene matrix composites: effect of treatments. Thermochim Acta 440:111–121. doi:10.1016/j.tca.2005.10.016

    Article  CAS  Google Scholar 

  41. Araujo JR, Waldman WR, De Paoli MA (2008) Thermal properties of high density polyethylene composites with natural fibres: coupling agent effect. Polym Degrad Stab 93:1770–1775. doi:10.1016/j.polymdegradstab.2008.07.021

    Article  CAS  Google Scholar 

  42. Amri F, Husseinsyah S, Hussin K (2013) Effect of sodium dodecyl sulfate on mechanical and thermal properties of polypropylene/chitosan composites. J Thermoplast Compos Mater 26:878–892. doi:10.1177/0892705711430430

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. Alias from Cocoa Research and Development Centre (Hilir Perak), Malaysian Cocoa Board for providing the cocoa pod husk waste for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koay Seong Chun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chun, K.S., Husseinsyah, S. & Yeng, C.M. Effect of green coupling agent from waste oil fatty acid on the properties of polypropylene/cocoa pod husk composites. Polym. Bull. 73, 3465–3484 (2016). https://doi.org/10.1007/s00289-016-1682-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1682-7

Keywords

Navigation