Skip to main content
Log in

Co(II) and Mn(II) catalyzed bulk ring-opening polymerization of cyclic esters

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Co(II) and Mn(II) salts were assessed to be good catalysts for the bulk ring-opening polymerization of cyclic esters. These polymerizations are reasonably controlled leading to the formation of polymer with good number average molecular weights (M n) and narrow molecular weight distributions. The polymerizations were studied in the presence and absence of benzyl alcohol and the polymerization tendency was found to increase in the presence of benzyl alcohol. The polymerization proceeds through the activated monomer mechanism, resulting in the formation of polymers containing the initiator as one of the end terminal groups. All the polymerizations show first-order kinetics with respect to monomer concentration. Ease of handling and low cost of Co(II) and Mn(II) salts make the catalytic process economically attractive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7

Similar content being viewed by others

Notes

  1. The term “bioassimilable” is used here to describe a polymer that will eventually be eliminated or metabolized by natural pathways.

References

  1. Mecking S (2004) Nature or petrochemistry?-biologically degradable materials. Angew Chem Int Ed 43:1078–1085. doi:10.1002/anie.200301655

    Article  CAS  Google Scholar 

  2. Coates GW, Hillmyer MA (2009) A virtual issue of macromolecules: “polymers from renewable resources”. Macromolecules 42:7987–7989. doi:10.1021/ma902107w

    Article  CAS  Google Scholar 

  3. Biela T, Kowalski A, Libiszowski J, Duda A, Penczek S (2006) Progress in polymerization of cyclic esters: mechanisms and synthetic applications. Macromol Symp 240:47–55. doi:10.1002/masy.200650807

    Article  CAS  Google Scholar 

  4. Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297:803–807. doi:10.1126/science.297.5582.803

    Article  CAS  Google Scholar 

  5. Okada M (2002) Chemical syntheses of biodegradable polymers. Prog Polym Sci 27:87–133. doi:10.1016/S0079-6700(01)00039-9

    Article  CAS  Google Scholar 

  6. O’Keefe BJ, Hillmyer MA, Tolman WB (2001) Polymerization of lactide and related cyclic esters by discrete metal complexes. J Chem Soc Dalton Trans 2215–2224. doi:10.1039/B104197P

  7. Dechy-Cabaret O, Martin-Vaca B, Bourissou D (2004) Controlled ring-opening polymerization of lactide and glycolide. Chem Rev 104:6147–6176. doi:10.1021/cr040002s

    Article  CAS  Google Scholar 

  8. Platel RH, Hodgson LM, Williams CK (2008) Biocompatible initiators for lactide polymerization. Polym Rev 48:11–63. doi:10.1080/15583720701834166

    Article  CAS  Google Scholar 

  9. Wu J, Yu T-L, Chen C-T, Lin C-C (2006) Recent developments in main group metal complexes catalyzed/initiated polymerization of lactides and related cyclic esters. Coord Chem Rev 250:602–626. doi:10.1016/j.ccr.2005.07.010

    Article  CAS  Google Scholar 

  10. Abdessamad A, Redshaw C (2010) Metal catalysts for ε-caprolactone polymerisation. Polym Chem 1:801–826. doi:10.1039/B9PY00334G

    Article  Google Scholar 

  11. Linblad MS, Liu Y, Albertsson A-C, Ranucci E, Karlsson S (2002) Polymer from renewable resources in advances in polymer science. In: A-C Albertsson (ed) Springer, New York, 157:139–61

  12. Penczek S (2000) Cationic ring-opening polymerization (CROP) major mechanistic phenomena. J Polym Sci Part A Polym Chem 38:1919–1933. doi:10.1002/(SICI)1099-0518(20000601)38:11<1919

    CAS  Google Scholar 

  13. Kubisa P, Penczek S (1999) Cationic activated monomer polymerization of heterocyclic monomers. Prog Polym Sci 24:1409–1437. doi:10.1016/S0079-6700(99)00028-3

    Article  CAS  Google Scholar 

  14. Stanford MJ, Dove AP (2010) Stereocontrolled ring-opening polymerisation of lactide. Chem Soc Rev 39:486–494. doi:10.1039/B815104K

    Article  CAS  Google Scholar 

  15. Sauer A, Kapelski A, Fliedel C, Dagorne S, Kol M, Okuda J (2013) Structurally well-defined group 4 metal complexes as initiators for the ring-opening polymerization of lactide mon omers. Dalton Trans 42:9007–9023. doi:10.1039/c3dt00010a

    Article  CAS  Google Scholar 

  16. Pratt RC, Lohmeijer BGG, Long DA, Waymouth RM, Hedrick JL (2006) Triazabicyclodecene: a simple bifunctional organocatalyst for acyl transfer and ring-opening polymerization of cyclic esters. J Am Chem Soc 128:4556–4557. doi:10.1021/ja060662

    Article  CAS  Google Scholar 

  17. Kricheldorf HR (2009) Syntheses of biodegradable and biocompatible polymers by means of bismuth catalysts. Chem Rev 109:5579–5594. doi:10.1021/cr900029e

    Article  CAS  Google Scholar 

  18. Mecerreyes D, Jerome R, Dubois P (1999) Novel macromolecular architectures based on aliphatic polyesters: Relevance of the “Coordination-Insertion” ring-opening polymerization in advances in polymer science, Springer, New York, 147:1–59

  19. Kharas GB, Sanchez-Riora F, Soverson DK (2004) Polymers of lactic acid. In: Mobley DP (ed) Plastics from microbes. Hanser Publ, Munchen, Germany

    Google Scholar 

  20. Silvernail CM, Yao LJ, Hill LMR, Hillmyer MA, Tolman WB (2007) Structural and mechanistic studies of bis(phenolato)amine zinc(II) catalysts for the polymerization of ε-caprolactone. Inorg Chem 46:6565–6574. doi:10.1021/ic700581s

    Article  CAS  Google Scholar 

  21. Du H, Xuan Pang X, Yu H, Zhuang X, Chen X, Cui D, Wang X, Jing X (2007) Polymerization of rac-lactide using schiff base aluminum catalysts: structure, activity, and stereoselectivity. Macromolecules 40:1904–1913. doi:10.1021/ma062194u

    Article  CAS  Google Scholar 

  22. Barakat I, Dubois P, Jérôme R, Teyssié P (1993) Macromolecular engineering of polylactones and polylactides. X. Selective end-functionalization of poly(d, l)-lactide. J Polym Sci Part A Polym Chem 31:505–514. doi:10.1002/pola.1993.080310222

    CAS  Google Scholar 

  23. Gregson CKA, Blackmore IJ, Gibson VC, Long NJ, Marshall EL, White AJP (2006) Titanium-salen complexes as initiators for the ring opening polymerisation of rac-lactide. Dalton Trans 3134–3140. doi:10.1039/B518266B

  24. Kricheldorf HR, Hachmann-Thiessen H, Schwartz G (2004) Di-, tri- and tetrafunctional poly(ε-caprolactone)s by Bi(OAc)3-catalyzed ring-opening polymerizations of ε-caprolactone. Macromolecules 37:6340–6345. doi:10.1021/ma030425g

    Article  CAS  Google Scholar 

  25. Williams CK, Choi LE, Nam W, Young VG Jr, Hillmyer MA, Tolman WB (2003) A highly active zinc catalyst for the controlled polymerization of lactide. J Am Chem Soc 125:11350–11359. doi:10.1021/ja0359512

    Article  CAS  Google Scholar 

  26. Alcazar-Roman LM, O’ Keefe BJ, Hillmyer MA, Tolman WB (2003) Electronic influence of ligand substituents on the rate of polymerization of ε-caprolactone by single-site aluminium alkoxide catalysts. Dalton Trans 3082–3087. doi:10.1039/B303760F

  27. O’Keefe BJ, Breyfogle LE, Hillmyer MA, Tolman WB (2002) Mechanistic comparison of cyclic ester polymerizations by novel iron(III)-alkoxide complexes: single vs multiple site catalysis. J Am Chem Soc 124:4384–4393. doi:10.1021/ja012689t

    Article  Google Scholar 

  28. Chamberlain BM, Cheng M, Moore DR, Ovitt T, Lobkovsky EB, Coates GW (2001) Polymerization of lactide with zinc and magnesium β-diiminate complexes: stereocontrol and mechanism. J Am Chem Soc 123:3229–3238. doi:10.1021/ja003851f

    Article  CAS  Google Scholar 

  29. Stevels WM, Ankone MJK, Dijkstra PJ, Feijen J (1996) Kinetics and mechanism of ε-caprolactone polymerization using yttrium alkoxides as initiators. Macromolecules 29:8296–8303. doi:10.1021/ma960701

    Article  CAS  Google Scholar 

  30. Chakraborty D, Chen EY-X (2003) Chiral amido aluminum and zinc alkyls: a synthetic, structural, and polymerization study. Organometallics 22:769–774. doi:10.1021/om020889n

    Article  CAS  Google Scholar 

  31. Chakraborty D, Chen EY-X (2002) Neutral, three-coordinate, chelating diamide aluminum complexes: catalysts/initiators for synthesis of telechelic oligomers and high polymers. Organometallics 21:1438–1442. doi:10.1021/om011051n

    Article  CAS  Google Scholar 

  32. Ni Q, Yu L (1998) Synthesis of novel poly(ε-caprolactone)s functionalized with a thioester end-group via a living ring opening polymerization and their application in chemoselective ligation with compounds containing a cysteine terminal. J Am Chem Soc 120:1645–1646. doi:10.1021/ja9738790

    Article  CAS  Google Scholar 

  33. Huang C-H, Wang F-C, Ko B-T, Yu L-T, Lin C–C (2001) Ring-opening polymerization of ε-caprolactone and l-lactide using aluminum thiolates as initiator. Macromolecules 34:356–361. doi:10.1021/ma0014719

    Article  CAS  Google Scholar 

  34. Stolt M, Södergård A (1999) Use of monocarboxylic iron derivatives in the ring-opening polymerization of l-lactide. Macromolecules 32:6412–6417. doi:10.1021/ma9902753

    Article  CAS  Google Scholar 

  35. Stolt M, Södergård A (1998) Ring-opening polymerization of l-lactide by means of different iron compounds. Macromol Symp 130:393–402. doi:10.1002/masy.19981300133

    Article  Google Scholar 

  36. Kricheldorf HR, Damrau D-O (1997) Polylactones, 38. Polymerization of l-lactide with Fe(II) lactate and other resorbable Fe(II) salts. Macromol Chem Phys 198:1767–1774. doi:10.1002/macp.1997.021980606

    Article  CAS  Google Scholar 

  37. Kricheldorf HR, Serra A (1958) Polylactones in polymer bulletin. Springer, New York, 14:497–502

  38. Yang N, Xin L, Gao W, Zhang J, Luo X, Liu X, Mu Y (2012) Al and Zn complexes bearing N, N, N-tridentate quinolinyl anilidoimine ligands: synthesis, characterization and catalysis in l-lactide polymerization. Dalton Trans 41:11454–11463. doi:10.1039/c2dt30594a

    Article  CAS  Google Scholar 

  39. Roberts CC, Barnett BR, Green DB, Fritsch JM (2012) Synthesis and structures of tridentate ketoiminate zinc complexes that act as l-lactide ring-opening polymerization catalysts. Organometallics 31:4133–4141. doi:10.1021/om200865w

    Article  CAS  Google Scholar 

  40. Ma W-A, Wang Z-X (2011) Zinc and aluminum complexes supported by quinoline-based N, N, N-chelate ligands: synthesis, characterization, and catalysis in the ring-opening polymerization of ε-caprolactone and rac-lactide. Organometallics 30:4364–4373. doi:10.1021/om200423g

    Article  CAS  Google Scholar 

  41. Wheaton CA, Hayes PG, Ireland BJ (2009) Complexes of Mg, Ca and Zn as homogeneous catalysts for lactide polymerization. Dalton Trans 4832–4846. doi:10.1039/b819107g

  42. Helou M, Miserque O, Brusson J-M, Carpentier J-F, Guillaume SM (2009) Poly(trimethylene carbonate) from biometals-based initiators/catalysts: highly efficient immortal ring-opening polymerization processes. Adv Synth Catal 351:1312–1324. doi:10.1002/adsc.200800788

    Article  CAS  Google Scholar 

  43. Labourdette G, Lee DJ, Patrick O, Ezhova MB, Mehrkhodavandi P (2009) Unusually stable chiral ethyl zinc complexes: reactivity and polymerization of lactide. Organometallics 28:1309–1319. doi:10.1021/om800818v

    Article  CAS  Google Scholar 

  44. Chen M-T, Chang P-J, Huang C-A, Peng K-F, Chen, C-T (2009) Magnesium complexes containing bis-amido-oxazolinate ligands as efficient catalysts for ring-opening polymerisation of l-lactide. Dalton Trans 9068–9074. doi:10.1039/B907549F

  45. Helou M, Miserque O, Brusson J-M, Carpentier J-F, Guillaume SM (2008) Ultraproductive, zinc-mediated, immortal ring-opening polymerization of trimethylene carbonate. Chem Eur J 14:8772–8775. doi:10.1002/chem.200801416

    Article  CAS  Google Scholar 

  46. Jeske RC, DiCiccio AM, Coates GW (2007) Alternating copolymerization of epoxides and cyclic anhydrides: an improved route to aliphatic polyesters. J Am Chem Soc 129:11330–11331. doi:10.1021/ja0737568

    Article  CAS  Google Scholar 

  47. Marshall EL, Gibson VC, Rzepa HS (2005) A computational analysis of the ring-opening polymerization of rac-lactide initiated by single-site β-diketiminate metal complexes: defining the mechanistic pathway and the origin of stereocontrol. J Am Chem Soc 127:6048–6051. doi:10.1021/ja043819b

    Article  CAS  Google Scholar 

  48. Chen M, Attygalle AB, Lobkovsky EB, Coates GW (1999) Single-site catalysts for ring-opening polymerization: synthesis of heterotactic poly(lactic acid) from rac-lactide. J Am Chem Soc 121:11583–11584. doi:10.1021/ja992678o

    Article  Google Scholar 

  49. Wu J-C, Huang B-H, Hsueh M-L, Lai S-L, Lin C-C (2005) Ring-opening polymerization of lactide initiated by magnesium and zinc alkoxides. Polymer 46:9784–9792. doi:10.1016/j.polymer.2005.08.009

    Article  CAS  Google Scholar 

  50. Chen H-Y, Huang B-H, Lin C-C (2005) A highly efficient initiator for the ring-opening polymerization of lactides and ε-caprolactone: a kinetic study. Macromolecules 38:5400–5405. doi:10.1021/ma050672f

    Article  CAS  Google Scholar 

  51. Chen H-Y, Tang H-Y, Lin C-C (2006) Ring-opening polymerization of lactides initiated by zinc alkoxides derived from NNO-tridentate ligands. Macromolecules 39:3745–3752. doi:10.1021/ma060471r

    Article  CAS  Google Scholar 

  52. Ajellal N, Carpentier J-F, Guillaume C, Guillaume SM, Helou M, Poirier V, Sarazin Y, Trifonov (2010) A metal-catalyzed immortal ring-opening polymerization of lactones, lactides and cyclic carbonates. Dalton Trans 39:8363–8376. doi:10.1039/C001226B

    Article  CAS  Google Scholar 

  53. Sarazin Y, Poirier V, Roisnel T, Carpentier J-F (2010) Discrete, base-free, cationic alkaline-earth complexes–access and catalytic activity in the polymerization of lactide. Eur J Inorg Chem 3423–3428. doi:10.1002/ejic.201000558

  54. Wang L, Ma H (2010) Zinc complexes supported by multidentate aminophenolate ligands: synthesis, structure and catalysis in ring-opening polymerization of rac-lactide. Dalton Trans 39:7897–7910. doi:10.1039/C0DT00250J

    Article  CAS  Google Scholar 

  55. Huang Y, Hung W-C, Liao M-Y, Tsai T-E, Peng Y-L, Lin C-C (2009) Ring-opening polymerization of lactides initiated by magnesium and zinc complexes based on NNO-tridentate ketiminate ligands: activity and stereoselectivity studies. J Polym Sci A Polym Chem 47:2318–2329. doi:10.1002/pola.23314

    CAS  Google Scholar 

  56. Chen H-Y, Liu M-Y, Sutar AK, Lin C-C (2010) Synthesis and structural studies of heterobimetallic alkoxide complexes supported by bis(phenolate) ligands: efficient catalysts for ring-opening polymerization of l-lactide. Inorg Chem 49:665–674. doi:10.1021/ic901938e

    Article  CAS  Google Scholar 

  57. Li C-Y, Chen P-S, Hsu S-J, Lin C-H, Huang H-Y, Ko B-T (2012) Mono-aluminum, di-magnesium and tri-zinc complexes supported by bisphenolate ligand: synthesis, characterization and catalytic studies for ring-opening polymerization of cyclic esters. J Organomet Chem 716:175–181. doi:10.1016/j.jorganchem.2012.06.019

    Article  CAS  Google Scholar 

  58. Poirier V, Roisnel T, Carpentier J-F, Sarazin Y (2009) Versatile catalytic systems based on complexes of zinc, magnesium and calcium supported by a bulky bis(morpholinomethyl)phenoxy ligand for the large-scale immortal ring-opening polymerisation of cyclic esters. Dalton Trans 44:9820–9827. doi:10.1039/b917799j

    Article  Google Scholar 

  59. Liu B, Roisnel T, Guegan J-P, Carpentier J-F, Sarazin Y (2012) Heteroleptic silylamido phenolate complexes of calcium and the larger alkaline earth metals: β-agostic Ae···Si-H stabilization and activity in the ring-opening polymerization of l-lactide. Chem Eur J 18:6289–6301. doi:10.1002/chem.201103666

    Article  CAS  Google Scholar 

  60. Dobrzynski P, Kasperczyk J, Bero M (1999) Application of calcium acetylacetonate to the polymerization of glycolide and copolymerization of glycolide with ε-caprolactone and l-lactide. Macromolecules 32:4735–4737. doi:10.1021/ma981969z

    Article  CAS  Google Scholar 

  61. Chen J, Gorczynski JL, Zhang G, Fraser CL (2010) Iron tris(dibenzoylmethane-polylactide). Macromolecules 43:4909–4920. doi:10.1021/ma100333e

    Article  CAS  Google Scholar 

  62. O’Keefe BJ, Monnier SM, Hillmyer MA, Tolman WB (2001) Rapid and controlled polymerization of lactide by structurally characterized ferric alkoxides. J Am Chem Soc 123:339–340. doi:10.1021/ja003537l

    Article  Google Scholar 

  63. Gowda RR, Chakraborty D (2010) Zinc acetate as a catalyst for the bulk ring opening polymerization of cyclic esters and lactide. J Mol Catal A Chem 333:167–172. doi:10.1016/j.molcata.2010.10.013

    Article  CAS  Google Scholar 

  64. Gowda RR, Chakraborty D (2011) Copper acetate catalyzed bulk ring opening polymerization of lactides. J Mol Catal A Chem 349:86–93. doi:10.1016/j.molcata.2011.08.024

    Article  CAS  Google Scholar 

  65. Gowda RR, Chakraborty D (2009) Environmentally benign process for bulk ring opening polymerization of lactones using iron and ruthenium chloride catalysts. J Mol Catal A Chem 301:84–92. doi:10.1016/j.molcata.2008.11.010

    Article  CAS  Google Scholar 

  66. Okamoto Y (1991) Cationic ring-opening polymerization of lactones in the presence of alcohol. Makromolekulare Chemie. Macromol Symp 42/43:117–133. doi:10.1002/masy.19910420109

  67. Searles S, Tamres M, Barrow GM (1953) Hydrogen-bonding of esters and lactones. Site of bonding and effect of ring size. J Am Chem Soc 75:71–73. doi:10.1021/ja01097a019

    Article  CAS  Google Scholar 

  68. Gowda RR, Chakraborty D, Ramkumar V (2009) New aryloxy and benzyloxy derivatives of titanium as catalysts for bulk ring-opening polymerization of ε-caprolactone and δ-valerolactone. Eur J Inorg Chem 2981–2993. doi:10.1002/ejic.200900280

  69. Gowda RR, Chakraborty D, Ramkumar V (2010) Aryloxy and benzyloxy compounds of hafnium: synthesis, structural characterization and studies on solvent-free ring-opening polymerization of ε-caprolactone and δ-valerolactone. Polymer 51:4750–4759. doi:10.1016/j.polymer.2010.08.031

    Article  CAS  Google Scholar 

  70. Gowda RR, Ramkumar V, Chakraborty D Indian Patent: 2550/CHE/2010

  71. Idage BB, Idage SB, Kasegaonkar AS, Jadhav RV (2010) Ring opening polymerization of dilactide using salen complex as catalyst. Mater Sci Eng B 168:193–198. doi:10.1016/j.mseb.2009.10.037

    Article  CAS  Google Scholar 

  72. Kricheldorf HR, Damrau D-O (1998) Polylactones. 44. Polymerizations of l-lactide catalyzed by manganese salts. JMS Pure Appl Chem 35:1875–1887. doi:10.1080/10601329808000558

    Google Scholar 

  73. Mazarro R, Cabezas LI, Lucas AD, Gracia I, Rodríguez JF (2009) Study of different catalysts and initiators in bulk copolymerization of d, l-lactide and glycolide. JMS Pure Appl Chem 46:1049–1059. doi:10.1080/10601320903252090

    CAS  Google Scholar 

  74. Breyfogle LE, Williams CK, Young VG., Hillmyer MA, Tolman WB (2006) Comparison of structurally analogous Zn2, Co2, and Mg2 catalysts for the polymerization of cyclic esters. Dalton Trans 928–936. doi:10.1039/B507014G

  75. Wu G-P, Wei S-H, Ren W-M, Lu X-B, Xu T-Q, Darensbourg DJ (2011) Perfectly alternating copolymerization of CO2 and epichlorohydrin using cobalt(III)-based catalyst systems. J Am Chem Soc 133:15191–15199. doi:10.1021/ja206425j

    Article  CAS  Google Scholar 

  76. Adamo R, Saksena R, Kovák P (2006) Studies towards a conjugate vaccine for anthrax: synthesis of the tetrasaccharide side chain of the bacillus anthracis exosporium. Helv Chim Acta 89:1075–1089. doi:10.1002/hlca.200690106

    Article  CAS  Google Scholar 

  77. Frisch MJ., Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T. CT (2010)

  78. de Geus M, Peters R, Koning CE, Heise A (2008) Insights into the initiation process of enzymatic ring-opening polymerization from monofunctional alcohols using liquid chromatography under critical conditions. Biomacromolecules 9:752–757. doi:10.1021/bm701158y

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Council of Scientific and Industrial Research, New Delhi, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debashis Chakraborty.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 772 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajashekhar, B., Chakraborty, D. Co(II) and Mn(II) catalyzed bulk ring-opening polymerization of cyclic esters. Polym. Bull. 71, 2185–2203 (2014). https://doi.org/10.1007/s00289-014-1180-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-014-1180-8

Keywords

Navigation