Skip to main content
Log in

Solvent isotope effect on sol–gel transition of methylcellulose studied by DSC

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Methylcellulose (MC), a hydrophobically modified cellulose derivative, in an aqueous solution undergoes sol-to-gel and gel-to-sol transitions on heating and cooling, respectively. Using differential scanning calorimetry, MC in light (H2O) and heavy (D2O) water solutions has been investigated to elucidate the solvent isotope effect on the transitions. As a result, their transition temperatures are higher in H2O by about 4 °C than D2O. This phenomenon is rationalized in terms of the strength of the hydrophobic attractive interaction; the strength is enhanced by D2O. We discuss the reason for the enhancement and the difference in the isotope effect between MC and a poly(N-isopropylacrylamide) polymer which shows an opposite trend to MC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lodish H, Baltimore D, Berk A, Zipursky SL, Matsudaira P, Darnell J (1995) Molecular cell biology, 3rd edn. Scientific American Books, New York

    Google Scholar 

  2. Haque A, Morris ER (1993) Thermogelation of methylcellulose. Part I: molecular structures and processes. Carbohydr Polym 22:161–173

    Article  CAS  Google Scholar 

  3. Kobayashi K, Huang C, Lodge TP (1999) Thermoreversible gelation of aqueous methylcellulose solutions. Macromolecules 32:7070–7077

    Article  CAS  Google Scholar 

  4. Li L, Shan H, Yue CY, Lam YC, Tam KC, Hu X (2002) Thermally induced association and dissociation of methylcellulose in aqueous solutions. Langmuir 18:7291–7298

    Article  CAS  Google Scholar 

  5. Haque A, Richardson RK, Morris ER, Gidley MJ, Caswell DC (1993) Thermogelation of methylcellulose. Part II: effect of hydroxypropyl substituents. Carbohydr Polym 22:175–186

    Article  CAS  Google Scholar 

  6. Sarkar N, Walker LC (1995) Hydration–dehydration properties of methylcellulose and hydroxypropylmethylcellulose. Carbohydr Polym 27:177–185

    Article  CAS  Google Scholar 

  7. Winnik FM (1989) Association of hydrophobic polymers in H2O and D2O: fluorescence studies with (hydroxypropyl) cellulose. J Phys Chem 93:7452–7457

    Article  CAS  Google Scholar 

  8. Joshi SC (2011) Sol–gel behavior of hydroxypropyl methylcellulose (HPMC) in ionic media including drug release. Materials 4:1861–1905

    Article  CAS  Google Scholar 

  9. Takahashi M, Shimazaki M, Yamamoto J (2001) Thermoreversible gelation and phase separation in aqueous methyl cellulose solutions. J Polym Sci Part B: Polym Phys 39:91–100

    Article  CAS  Google Scholar 

  10. Xu Y, Li L (2005) Thermoreversible and salt-sensitive turbidity of methylcellulose in aqueous solution. Polymer 46:7410–7417

    Article  CAS  Google Scholar 

  11. Li L, Thangamathesvaran PM, Yue CY, Tam KC, Hu X, Lam YC (2001) Gel network structure of methylcellulose in water. Langmuir 17:8062–8068

    Article  CAS  Google Scholar 

  12. Chevillard C, Axelos MAV (1997) Phase separation of aqueous solution of methylcellulose. Colloid Polym Sci 275:537–545

    Article  CAS  Google Scholar 

  13. Hirrien M, Chevillard C, Desbriéres J, Axelos MAV, Rinaudo M (1998) Thermogelation of methylcellulose: new evidence for understanding the gelation mechanism. Polymer 39:6251–6259

    Article  CAS  Google Scholar 

  14. Desbriéres J, Hirrien M, Rinaudo M (1998) A calorimetric study of methylcellulose gelation. Carbohydr Polym 37:145–152

    Article  Google Scholar 

  15. Xu Y, Wang C, Tam KC, Li L (2004) Salt-assisted and salt-suppressed sol–gel transitions of methylcellulose in water. Langmuir 20:646–652

    Article  Google Scholar 

  16. Zheng P, Li L, Hu X, Zhao X (2004) Sol–gel transition of methylcellulose in phosphate buffer saline solutions. J Polym Sci Part B: Polym Phys 42:1849–1860

    Article  CAS  Google Scholar 

  17. Kundu PP, Kundu M (2001) Effect of salts and surfactant and their doses on the gelation of extremely dilute solutions methyl cellulose. Polymer 42:2015–2020

    Article  CAS  Google Scholar 

  18. Li L, Liu E, Lim CH (2007) Micro-DSC and rheological studies of interactions between methylcellulose and surfactants. J Phys Chem 111:6410–6416

    Article  CAS  Google Scholar 

  19. Efimova YM, Haemers S, Wierczinski B, Norde W, van Well AA (2006) Stability of globular protein in H2O and D2O. Biopolymers 85:264–273

    Article  Google Scholar 

  20. Sasisanker P, Oleinikova A, Weingärtner H, Ravindra R, Winter R (2004) Solvation properties and stability of ribonuclease A in normal and deuterated water studied by dielectric relaxation and differential scanning/pressure perturbation calorimetry. Phys Chem Chem Phys 6:1899–1905

    Article  CAS  Google Scholar 

  21. Guzzi R, Sportelli L, La Rosa C, Milardi D, Grasso D (1998) Solvent isotope effects on azurin thermal unfolding. J Phys Chem B 102:1021–1028

    Article  CAS  Google Scholar 

  22. Wang X, Wu C (1999) Light-scattering study of coil-to-globule transition of a poly(N-isopropylacrylamide) chain in deuterated water. Macromolecules 32:4299–4301

    Article  CAS  Google Scholar 

  23. Kujawa P, Winnik FM (2001) Volumetric studies of aqueous polymer solution using pressure perturbation calorimetry: a new look at the temperature-induced phase transition of poly(N-isopropylacrylamide) in water and D2O. Macromolecules 34:4130–4135

    Article  CAS  Google Scholar 

  24. Tiktopulo EI, Bychkova VE, Rička J, Ptitsyn OB (1994) Cooperativity of the coil–globule transition in a homopolymer: microcalorimetric study of poly(N-isopropylacrylamide). Macromolecules 27:2879–2882

    Article  CAS  Google Scholar 

  25. Shirota H, Kuwabara N, Ohkawa K, Horie K (1999) Deuterium isotope effect on volume phase transition of polymer gel: temperature dependence. J Phys Chem B 103:10400–10408

    Article  CAS  Google Scholar 

  26. Mao H, Li C, Zhang Y, Furyk S, Cremer PS, Bergbreiter DE (2004) High-throughput studies of the effects of polymer structure and solution components on the phase separation of thermoresponsive polymers. Macromolecules 37:1031–1036

    Article  CAS  Google Scholar 

  27. Kresheck GC, Schneider H, Scheraga HA (1965) The effect of D2O on the thermal stability of proteins. Thermodynamic parameters for the transfer of model compounds from H2O to D2O. J Phys Chem 69:3132–3144

    Article  CAS  Google Scholar 

  28. Némethy G, Scheraga HA (1964) Structure of water and hydrophobic bonding in proteins. IV. The thermodynamic properties of liquid deuterium oxide. J Chem Phys 41:680–698

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinori Miura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miura, Y. Solvent isotope effect on sol–gel transition of methylcellulose studied by DSC. Polym. Bull. 71, 1441–1448 (2014). https://doi.org/10.1007/s00289-014-1134-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-014-1134-1

Keywords

Navigation