Skip to main content

Advertisement

Log in

Effect of succinonitrile and nano-hydroxyapatite on ionic conductivity and interfacial stability of polyether-based plasticized nanocomposite polymer electrolytes (PNCSPE)

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A series of novel plasticized nanocomposite solid polymer electrolytes (PNCSPE) consisting of polyethylene oxide as polymer host, lithium bisoxalatoborate as salt with different weight ratios of succinonitrile and nano-hydroxyapatite was prepared by membrane hot-press technique. The electrical property of PNCSPE was investigated by AC impedance analysis. The migration of lithium ion in the polymer matrix was confirmed from cyclic voltammetry study. The incorporation of different compositions of filler and plasticizer in the polymer matrix significantly enhanced the amorphous nature resulted in increase in ionic conductivity of PNCSPE. The maximum ionic conductivity was found to be in the order of 10−3.1 S/cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bruce PG (1995) Solid state electrochemistry. Cambridge Univ Press, Cambridge

    Google Scholar 

  2. MacCallum JR, Vincent CA (eds) (1989) Polymer electrolyte reviews. Elsevier, London

    Google Scholar 

  3. Gray FM (1991) Solid polymer electrolytes-fundamentals and technical applications. VCH, Weinheim

    Google Scholar 

  4. Abraham KM (1993) In: Scrosati B (ed) Applications of electroactive polymers. Chapman and Hall, London

  5. Stephan AM (2006) Review on gel polymer electrolytes for lithium batteries. Eur Polym J 42:21–42

    Article  Google Scholar 

  6. Bandara LRAK, Dissanayake MAKL, Mellander BE (1998) Ionic conductivity of plasticized (PEO)–LiCF3SO3 electrolytes. Electrochim Acta 43:1447–1451

    Article  CAS  Google Scholar 

  7. Croce F, Appetechi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456–458

    Article  CAS  Google Scholar 

  8. Appetechi GB, Croce F, Persi L, Ronsi F, Scrosati B (2000) Transport and interfacial properties of composite polymer electrolytes. Electrochim Acta 45:1481–1490

    Article  Google Scholar 

  9. Ramesh S, Leen KH, Kumutha K, Arof AK (2007) FT-IR studies of PVC/PMMA based polymer electrolytes. Spectrochim Acta A 66:1237–1242

    Article  CAS  Google Scholar 

  10. Stephan AM, Premkumar T, Kulandainathan MA, Angulakshmi N (2009) Chitin incorporated poly(ethylene oxide) based nanocomposite electrolytes for lithium batteries. J Phys Chem B 113:1963–1971

    Article  CAS  Google Scholar 

  11. Tambelli CC, Bloise AC, Rosario AV, Pereira EC, Morgan CJ, Donoso JP (2002) Characterization of PEO-Al2O3 composite polymer electrolytes. Electrochim Acta 47:1677–1682

    Article  CAS  Google Scholar 

  12. Karuppasamy K, Antony R, Thanikaikarasan S, Balakumar S, Sahaya Shajan X (2012) Combined effect of nanochitosan and succinonitrile on structural, mechanical, thermal and electrochemical properties of plasticized nanocomposite polymer electrolytes (PNCPE) for lithium batteries. Ionics 19:747–755

    Article  Google Scholar 

  13. Laghzizil A, Elherch N, Bouhaouss A, Lorente G, Coradin T, Livage J (2001) Electrical behaviour of hydroxyapatite M10(PO4)6(OH)2 (M = Ca, Pb, Ba). Mater Res Bull 36:953–962

    Article  CAS  Google Scholar 

  14. Owada H, Yamashita K, Umegaki I, Kanazawa T (1989) Humidity sensitivity of yttrium substituted apatite ceramics. Solid State Ionics 35:401–404

    Article  CAS  Google Scholar 

  15. Mehaute Alain, Crepy Gilles, Marcellin Georges, Hamaide Thierry, Guyot Alain (1985) Polymer electrolytes. Polym Bull 14:233–237

    Google Scholar 

  16. Joined Council for Powder Diffracted System-International Centre for Diffraction Data (2003) PDF No. 42-2201. Pennsylvania, USA

  17. Kumar Y, Hashmi SA, Pandey GP (2011) Ionic liquid mediated magnesium ion conduction in poly (ethylene oxide) based polymer electrolytes. Electrochim Acta 56:3864–3873

    Article  CAS  Google Scholar 

  18. Fan LZ, Maier J (2006) Composite effects in poly (ethylene oxide)-succinonitrile based polymer electrolytes. Electrochem Commun 8:1753–1756

    Article  CAS  Google Scholar 

  19. Vega ED, Pedregosa JC, Narda GE (1999) Interaction of oxovanadium(IV) with crystalline calcium hydroxyapatite: surface mechanism with no structural modification. J Phys Chem Solids 60:759–766

    Article  CAS  Google Scholar 

  20. Kailasanathan C, Selvakumar N (2012) Comparative study of hydroxyapatite/gelatin composites reinforced with bio-inert ceramic particles. Ceram Int 38:3569–3582

    Article  CAS  Google Scholar 

  21. Baskaran R, Selvasekarapandian S, Kuwata N, Kawamura J, Hattori T (2006) Ac impedance, DSC and FT-IR investigations on (x)PVAc–(1 − x)PVdF blends with LiClO4. Mat Chem Phys 98:55–61

    Article  CAS  Google Scholar 

  22. Capiglia C, Yang J, Imanishi N, Hirano A, Takeda Y, Yamamoto (2003) DSC study on the thermal stability of solid polymer electrolyte cells. J Power Sources 119:826–832

    Article  Google Scholar 

  23. Karuppasamy K, Thanikaikarasan S, Antony R, Balakumar S, Sahaya Shajan X (2012) Effect of nanochitosan on electrochemical, interfacial and thermal properties of composite solid polymer electrolytes. Ionics 18:737–745

    Article  CAS  Google Scholar 

  24. Croce F, Persi L, Scrosati B, Fiory FS, Plichta E, Hendrickson MA (2001) Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochim Acta 46:2457–2461

    Article  CAS  Google Scholar 

  25. Krawiec W, Scanlon LG, Fellner JP, Vaia RA, Giannelis EP (1995) Polymer nanocomposites: a new strategy for synthesizing solid electrolytes for rechargeable lithium batteries. J Power Sources 54:310–315

    Article  CAS  Google Scholar 

  26. Christie AM, Lilley SJ, Staunton E, Andreev YG, Bruce PG (2005) Increasing the conductivity of crystalline polymer electrolytes. Nature 433:50–53

    Article  CAS  Google Scholar 

  27. Wu XL, Xin S, Seo HH, Kim J, Guo YJ, Lee JS (2011) Enhanced Li+ conductivity in PEO–LiBOB polymer electrolytes by using succinonitrile as a plasticizer. Solid State Ionics 186:1–6

    Article  CAS  Google Scholar 

  28. Wieczoreck W, Siekierski M, Nanocomposites (2008) In: Knauth P, Schoonman J (eds.) Ionic conducting materials and structural spectroscopies. Springer, Netherland

  29. González LGM, Reyna ER, Moreno KJ, García JIE, Fuentes AF (2009) Ionic conductivity of apatite-type rare-earth silicates prepared by mechanical milling. J Alloys Compd 476:710–714

    Article  Google Scholar 

  30. Karuppasamy K, Linda T, Thanikaikarasan S, Balakumar S, Mahalingam T, Sebastian PJ, Sahaya Shajan X (2013) Electrical and dielectric behavior of nano bioceramic filler incorporated polymer electrolytes for rechargeable lithium ion batteries. J New Mat Electr Sys 16:116–120

    Google Scholar 

  31. Munichandraiah N, Kumar B, Rodrigues S (2002) Ionic conductivity and ambient temperature Li electrode reaction in composite polymer electrolytes containing nanosize alumina. J Power Sources 111:165–172

    Article  Google Scholar 

  32. Do JS, Chang CP, Lee TJ (1996) Electrochemical properties of lithium salt-poly(ethylene oxide)-ethylene carbonate polymer electrolyte and discharge characteristics of Li/MnO2. Solid State Ionics 89:291–298

    Article  CAS  Google Scholar 

  33. Park JW, Jeong ED, Won MS, Shim YB (2006) Effect of organic acids and nano-sized ceramic doping on PEO-based solid polymer electrolytes. J Power Sources 160:674–680

    Article  CAS  Google Scholar 

  34. Stephan AM, Nahm KS, Premkumar T, Kulandhainathan MA, Ravi G, Wilson J (2006) Nanofiller incorporated poly(vinylidene fluoride–hexafluoropropylene) (PVdF–HFP) composite electrolytes for lithium batteries. J Power Sources 159:1316–1321

    Article  CAS  Google Scholar 

  35. Saikia D, Kumar A (2004) Ionic conduction in P(VDF-HFP)/PVDF–(PC + DEC)–LiClO4 polymer gel electrolytes. Electrochim Acta 49:2581–2589

    Article  CAS  Google Scholar 

  36. Oleksiak AL (1999) The interface between lithium and poly (ethylene-oxide). Solid State Ionics 119:205–209

    Article  Google Scholar 

Download references

Acknowledgments

The authors (XSS) and (SB) thank Department of Science and Technology (DST), New Delhi, India for the financial support received for carrying out this project (Sanction No SR/S1/PC54/2009 dated 17.6.2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Sahaya Shajan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karuppasamy, K., Vijil Vani, C., Antony, R. et al. Effect of succinonitrile and nano-hydroxyapatite on ionic conductivity and interfacial stability of polyether-based plasticized nanocomposite polymer electrolytes (PNCSPE). Polym. Bull. 70, 2531–2545 (2013). https://doi.org/10.1007/s00289-013-0970-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-013-0970-8

Keywords

Navigation