Skip to main content
Log in

Dynamic mechanical properties of high density polyethylene and teak wood flour composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The dynamic mechanical properties of high density polyethylene (HDPE) and teak wood flour (TWF) composites at varying volume fraction (Φ f) of TWF from 0.00 to 0.32 have been studied. In HDPE/TWF composites, storage modulus (E′) decreased at Φ f = 0.05, then increases with Φ f; however, values were lower than HDPE up to Φ f = 0.16, due to a pseudolubricating effect of filler. Loss modulus (E″) values were higher than HDPE in β and α relaxation regions while in γ relaxation region values were marginally equal to HDPE. Tan δ value decreases with Φ f which may be due to enhanced amorphization and decreased crystallinity of HDPE. In presence of maleic anhydride grafted HDPE (HDPE-g-MAH), E′ values were lower than HDPE/TWF composites. In HDPE/TWF/HDPE-g-MAH, E″ were slightly higher than HDPE/TWF due to slippage of HDPE chains facilitated by the extent of degradation of coupling agent. Tan δ were higher for both systems than the rule of mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Youngquist J, Myers GE, Ageney U, Luther WM (1992) Lignocellulosic–plastic composites from recycled materials. Forest 2:1–2

    Google Scholar 

  2. Bledzki AK, Gassan J, Theis S (1998) Wood-filled thermoplastic composites. Mechan Compos Mater 34(6):563–568

    Article  CAS  Google Scholar 

  3. Wood-plastic composites. TechLine, F.P.L., Issued 01/04

  4. Selke SE, Wichman I (2004) Wood fiber/polyolefin composites. Composite Part A 35:321–326

    Article  Google Scholar 

  5. Joshi SV, Drzal LT, Mohanty AK, Arora S (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composite Part A 35:371–376

    Article  Google Scholar 

  6. Li Q, Matuana LM (2003) Effectiveness of maleated and acrylic acid-functionalized polyolefin coupling agents for HDPE-wood-flour composites. J Thermoplas Compos Mater 16(6):551–564

    Article  CAS  Google Scholar 

  7. Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24(2):221–274

    Article  CAS  Google Scholar 

  8. Maiti SN, Hassan MR (1989) Melt rheological properties of polypropylene–wood flour composites. J Appl Polym Sci 37(7):2019–2032

    Article  CAS  Google Scholar 

  9. Li Q, Matuana LM (2003) Surface of cellulosic materials modified with functionalized polyethylene coupling agents. J Appl Poly Sci 88:278–286

    Article  CAS  Google Scholar 

  10. Rizvi G, Matuana LM, Park CB (2000) Polym Eng Sci 40:2124

    Article  CAS  Google Scholar 

  11. Patil YP, Gajre B, Dusane D, Chavan S, Mishra S (2000) Effect of maleic anhydride treatment on steam and water absorption of wood polymer composites prepared from wheat straw, cane bagasse, and teak wood sawdust using Novolac as matrix. J Appl Polym Sci 77(13):2963–2967

    Article  CAS  Google Scholar 

  12. Rowell RM, Sanadi AR, Caulfield DF, Jacobson E, Leo AL, Carvalho FX, Frollini E (1997) Utilization of natural fibers in plastic composites: problems and opportunities. Forest 2(1):23–51

    Google Scholar 

  13. Zhang MQ, Rong MZ, Lu X (2005) Fully biodegradable natural fiber composites from renewable resources: all-plant fiber composite. Compos Sci Tech 65:2514–2525

    Article  CAS  Google Scholar 

  14. Saheb DN, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Technol 18(4):351–363

    Article  CAS  Google Scholar 

  15. Balasuriya PW, Ye L, Mai YW (2001) Mechanical properties of wood flake-polyethylene composites. Part I: effects of processing methods and matrix melt flow behaviour. Compos A 32:619–629

    Article  Google Scholar 

  16. Brydson JA (1999) Plastics materials. Butterworth Heinemann, New York

    Google Scholar 

  17. Stark NM, Matuana LM (2003) Ultraviolet weathering of photostabilized wood-flour filled high-density polyethylene composites. J Appl Poly Sci 90(10):2609–2617

    Article  CAS  Google Scholar 

  18. Stark NM, Matuana LM (2004) Surface chemistry changes of weathered HDPE/wood-flour composites studied by XPS and FTIR spectroscopy. Polym Degrad Stab 86(1):1–9

    Article  CAS  Google Scholar 

  19. Rosen MJ (1978) Surfactants and interfacial phenomena. John Wiley & Sons, New York

    Google Scholar 

  20. Bledzki AK, Faruk O (2003) Wood fibre reinforced polypropylene composites: effect of fibre geometry and coupling agent on physico-mechanical properties. Appl Compos Mater 10(6):365–379

    Article  CAS  Google Scholar 

  21. Lu JZ, Wu Q, Negulescu II (2005) Wood-fiber/high-density-polyethylene composites: coupling agent performance. J Appl Polym Sci 96(1):93–102

    Article  CAS  Google Scholar 

  22. Keener TJ, Stuart RK, Brown TK (2004) Maleated coupling agents for natural fibre composites. Composite Part A 35:357–362

    Article  Google Scholar 

  23. Li Q, Matuana LM (2003) Effectiveness of maleated and acrylic acid-functionalized polyolefin coupling agents for HDPE-wood-flour composites. J Thermoplas Compos Mater 16(6):551–564

    Google Scholar 

  24. Lu JZ, Wu Q, Negulescu H (2000) The influence of maleation on polymer adsorption and fixation, wood surface wettability, and interfacial bonding strength in wood-PVC composites. Wood Fibre Sci 34(3):434–459

    Google Scholar 

  25. Wang YEH, Yeh FC, Lai SM, Chan HC, Shen HF (2003) Effectiveness of functionalized polyolefins as compatibilizers for polyethylene/wood flour composites. Polym Eng Sci 43(4):933–945

    Article  CAS  Google Scholar 

  26. Balasuriya PW, Ye L, Mai YW, Wu J (2002) Mechanical properties of wood flake-polyethylene composites II. Interface modification. J Appl Polym Sci 83(12):2505–2521

    Article  CAS  Google Scholar 

  27. David DJ, Mishra A (1999) Relating materials properties to structure: handbook and software for polymer calculations and material properties. Technomic Publishing Co., Inc. Lancaster, Basel

  28. Boyd RH (1985) Relaxation processes in crystalline polymers: molecular interpretation—a review. Polym 26:1123–1133

    Article  CAS  Google Scholar 

  29. Murayama T (1987) Polymers: an encyclopedic source book of engineering properties encyclopedia reprint series. John Wiley & Sons, New York

    Google Scholar 

  30. Khonakdar HA, Morshedian J, Wagenknecht U, Jafari SH (2003) An investigation of chemical crosslinking effect on properties of high density polyethylene. Polymer 44:4301–4309

    Article  CAS  Google Scholar 

  31. Munaro M, Akcelrud L (2008) Correlations between composition and crystallinity of LDPE/HDPE blends. J Polym Research 15(1):83–88

    Article  CAS  Google Scholar 

  32. Sha H, Zhang X, Harrison IR (1991) A dynamic mechanical thermal analysis (DMTA) study of polyethylenes. Thermochim Acta 192:233–242

    Article  CAS  Google Scholar 

  33. Sirotkin RO, Brooks NW (2001) The dynamic mechanical relaxation behaviour of polyethylene copolymers cast from solution. Polym 42:9801

    Article  CAS  Google Scholar 

  34. Goertzen WK, Kessler MR (2007) Dynamic mechanical analysis of carbon/epoxy composites for structural pipeline repair. Compos Part B Eng 38:1–9

    Article  Google Scholar 

  35. Kroschwitz JI (ed) (1990) Concise Encyclopedia of Polymer Science and Technology, John Wiley and Sons, New York

  36. Boyer RF (1968) Dependence of mechanical properties on molecular motion in polymers. Polym Eng Sci 8(3):161–185

    Article  CAS  Google Scholar 

  37. Lin Z, Lin Z, Song-Zhen W, Nai-Kui G, Min Ii AMI, Yang Wu AYW, Heng-Kun Xei AH-KX (1995) Electrical insulating materials. International Symposium on, pp 173–176

  38. Pluss Polymers F-213/B, 1st Floor, Lado Sarai, New Delhi-110030, India. www.plusspolymers.com

  39. Hearle JWS (1982) Polymers and Their Properties. Ellis Horwood Limited, Chichester

    Google Scholar 

  40. Gradin P, Howgate PG, Selden R, Brown RA (1989) In: Allen G, Bevington JC (eds) Comprehensive polymer science: the synthesis, characterization reactions and applications of polymers, vol 2. Pergamon Press, New York

  41. Ehrenstein GW, Riedel G, Pia T (2004) Thermal analysis of polymers. Carl Hanser Verlag, Munich

    Google Scholar 

  42. Manson JA, Sperling LH (1976) Polymer blends and composites. Plenum, New York

    Book  Google Scholar 

  43. Sewda K, Maiti SN (2007) Mechanical properties of HDPE/bark flour composites. J Appl Polym Sci 105(5):2598–2604

    Article  CAS  Google Scholar 

  44. Sewda K, Maiti SN (2008) Mechanical properties of teak wood flour reinforced HDPE composites. J Appl Poly Sci (accepted for publication)

  45. Lewis TB, Nielsen LE (1970) Dynamic mechanical properties of particulate-filled composites. J Appl Polym Sci 14(6):1449–1471

    Article  CAS  Google Scholar 

  46. Nielsen LE (1974) Mechanical properties of polymers and composites, vol 2, Marcel Dekker Inc, New York, USA

  47. Alberola ND, Mele P (1997) Interface and mechanical coupling effects in model particulate composites. Polym Eng Sci 37(10):1712–1721

    Google Scholar 

  48. Oksman K, Lindberg H (1998) Influence of thermoplastic elastomers on adhesion in polyehtylene-wood flour composites. J Appl Polym Sci 68(11):1845–1855

    Article  CAS  Google Scholar 

  49. Bengtsson M, Gatenholm P, Oksman K (2005) The effect of crosslinking on the properties of polyethylene/wood flour composites. Compos Sci Tech 65(10):1468–1479

    Article  CAS  Google Scholar 

  50. Turi EA (1997) Thermal characterization of polymeric materials. Academic Press, San Diego

  51. Nielsen LE (1974) Mechanical properties of polymers and composites. M. Dekker Inc, New York

  52. Chacko VP, Karasz FE, Farris RJ (1982) Dynamic mechanical behavior of filled polyethylenes and model composites. Polym Eng Sci 22(15):968–974

    Article  CAS  Google Scholar 

  53. Klein N, Marom G, Pegoretti A, Migliaresi C (1995) Determining the role of interfacial transcrystallinity in composite materials by dynamic mechanical thermal analysis. Composites 26(10):707–712

    Article  CAS  Google Scholar 

  54. Mele P, Alberola ND (1996) Prediction of the viscoelastic behaviour of particulate composites: effect of mechanical coupling. Compos Sci Technol 56(7):849–853

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the Council of Scientific & Industrial Research (CSIR) for research grant and Senior Research Fellowship to one of them (Kamini Sewda).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Maiti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sewda, K., Maiti, S.N. Dynamic mechanical properties of high density polyethylene and teak wood flour composites. Polym. Bull. 70, 2657–2674 (2013). https://doi.org/10.1007/s00289-013-0941-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-013-0941-0

Keywords

Navigation