Skip to main content
Log in

Hyperbranched organoboron polymer electrolytes derived from glycerol

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Solid polymer electrolytes are still collecting attention today for development of safer Li-ion batteries. Introduction of boron moieties to electrolytes generally improves ion conductive properties of resultant electrolytes. Herein, we have undertaken dehydrocoupling reaction between glycerol (Gly)/triethylene glycol (TEG) and hydroborane to synthesize highly branched organoboron polymer electrolytes. Increase in amorphous nature of polymer due to branched structure improved the ionic conduction. This was supported from decreased Vogel–Fulcher–Tammann parameters corresponding to activation energy of ion transport in matrices. When Gly content was increased beyond [Gly]/[TEG] = 15%, ionic conductivity decreased due to decrease in solubility of the salt in organoboron polymer matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195:2419–2430

    Article  CAS  Google Scholar 

  2. Stephan AM (2006) Review on gel polymer electrolytes for lithium batteries. Eur Polymr J 42:21–42

    Article  Google Scholar 

  3. Wright PV (1976) Anomalous transition to a lower activation-energy for dc electrical-conduction above glass-transition temperature. J Polym Sci Part B 14:955

    CAS  Google Scholar 

  4. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  Google Scholar 

  5. Mehta MA, Fujinami T (1997) Li+ transference number enhancement in polymer electrolytes by incorporation of anion trapping boroxine rings into the polymer host. Chem Lett 26:915–916

    Article  Google Scholar 

  6. Sun XG, Angell CA (2001) “Acid-in-chain” versus “base-in-chain” anionic polymer electrolytes for electrochemical devices. Electrochim Acta 46:1467–1473

    Article  CAS  Google Scholar 

  7. Hirakimoto T, Nishiura M, Watanabe M (2001) Effects of addition of a boric acid ester monomer to electrolyte solutions and gel electrolytes on their ionic transport properties. Electrochim Acta 46:1609–1614

    Article  CAS  Google Scholar 

  8. Matsumi N, Sugai K, Ohno H (2002) Selective ion transport in organoboron polymer electrolytes bearing a mesitylboron unit. Macromolecules 35:5731–5733

    Article  CAS  Google Scholar 

  9. Matsumi N, Sugai K, Ohno H (2003) Ion conductive characteristics of alkylborane type and boric ester type polymer electrolytes derived from mesitylborane. Macromolecules 36:2321–2326

    Article  CAS  Google Scholar 

  10. Nishihara Y, Miyazaki M, Tomita Y, Kadono Y, Takagi K (2008) Synthesis and ion conductive characteristics of inorganic-organic hybrid polymers bearing a tetraarylpentaborate unit. J Polym Sci Part A Polym Chem 46:7913–7918

    Article  CAS  Google Scholar 

  11. Chujo Y, Tomita I, Hashiguchi Y, Tanigawa H, Ihara E, Saegusa T (1991) Hydroboration polymerization. 1. Synthesis of organoboron polymer by polyaddition between diene and monoalkylborane. Macromolecules 24:345–348

    Article  CAS  Google Scholar 

  12. Matsumi N, Chujo Y (2008) π-Conjugated organoboron polymers via the vacant p-orbital of the boron atom. Polym J 40:77–89

    Article  CAS  Google Scholar 

  13. Matsumi N, Naka K, Chujo Y (1998) Extension of π-conjugation length via the vacant p-orbital of the boron atom. Synthesis of novel electron deficient π-conjugated systems by hydroboration polymerization and their blue light emission. J Am Chem Soc 120:5112–5113

    Article  CAS  Google Scholar 

  14. Matsumi N, Chujo Y (1997) Synthesis of novel organoboron polymers by hydroboration polymerization of bisallene compounds. Polym Bull 38:531–536

    Article  CAS  Google Scholar 

  15. Miyata M, Matsumi N, Chujo Y (2001) Synthesis of poly(cyclodiborazane)s by hydroboration polymerization of dicyanooligothiophenes and their light-emitting properties. Macromolecules 34:7331–7335

    Article  CAS  Google Scholar 

  16. Matsumi N, Naka K, Chujo Y (1998) Hydroboration polymerization of dicyanoanthracene using mesitylborane. Macromolecules 31:8047–8050

    Article  CAS  Google Scholar 

  17. Chujo Y, Tomita I, Saegusa T (1991) Boronate oligomers via dehydrogenation of diols with thexylborane. Polym J 23:743–746

    Article  CAS  Google Scholar 

  18. Allcock HR, OConnor SJM, Olmeijer DL, Napierala ME, Cameron CG (1996) Polyphosphazenes bearing branched and linear oligoethyleneoxy side groups as solid solvents for ionic conduction. Macromolecules 29:7544–7552

    Article  CAS  Google Scholar 

  19. Hooper R, Lyons LJ, Moline DA, West R (1999) A highly conductive solid-state polymer electrolyte based on double-comb polysiloxane polymer with oligo(ethylene oxide) side chains. Organometallics 18:3249–3251

    Article  CAS  Google Scholar 

  20. Vogel H (1921) The temperature dependence law of the viscosity of fluids. Phys Z 22:645–646

    CAS  Google Scholar 

  21. Fulcher GS (1925) Analysis of recent measurements of the viscosity of glasses. J Am Ceram Soc 8:339

    Article  CAS  Google Scholar 

  22. Tamman G, Hesse W (1926) Die abhängigkeit der viskosität von der temperature bei unterkühlten flüssigkeiten. Z Anorg Allg Chem 156:245–257

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to New Energy and Industrial Technology Development Organization of Japan (NEDO; project ID 09B33004a) for financial grant for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriyoshi Matsumi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shankar, S.R., Matsumi, N. Hyperbranched organoboron polymer electrolytes derived from glycerol. Polym. Bull. 68, 721–727 (2012). https://doi.org/10.1007/s00289-011-0575-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-011-0575-z

Keywords

Navigation